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Editor's Preface

The (Lagrangian) motion of a fluid particle was contrasted with the
(Eulerian') flow past a fixed point in space during this twenty-fourth summer
program in geophysical fluid dynamics at the Woods Hole Oceanographic Institu-
tion. Peter Rhines opened the lecture series with a discussion of the basic
principles for large scale flows in a rotating system and followed that with
examples of fluid flows in which particle motions play a particularly signifi-
cant role. He discussed the distribution of both chemical and physical tracers
in oceanographic flows.

Glenn Flierl presented highly idealized, but highly illuminating, examples
of flows as seen in the Lagrangian and Eulerian frames of reference and then
discussed the observed and calculated transports of properties by Gulf Stream
rings.

The application of statistical mechanics to GFD was the focus for the
lecture series by Rick Salmon, who showed how to derive a number of important
oceanographic results by methods that physicists have used in other contexts
for many years.

David Andrews ended the series with the development of a theory of wave-
mean flow interactions and the application of those concepts to the observed
stratospheric warming in the atmosphere.

Just one week before the beginning of the program, we learned that because
of illness, Francis Bretherton would be unable to attend the program as princi-
pal invited lecturer. We are especially grateful to Flierl, Salmon and Andrews
for coming to the rescue so effectively with the lectures reported in the
following pages.

The microsymposium on biological and chemical t.acers in the ocean
included twenty seminars on different aspects of tracer distributions and the
dynamics of mixing and stirring in the ocean.

Seminars on GFD topics are summarized in the abstracts by the staff and
visitors. The Fellows' reports reflect the broad range of topics in which
they attempted to formulate and solve a tractable problem.

Peter Rhines helped to organize a large part of the activity of the
summer. Dave Broutman, Rick Salmon and Mark Swenson, our three Scripps parti-
cipants, inspired the GFD softball team to its first winning season in 20
years. A photograph of the team is included in the volume to commemorate that
achievement.

Florence Mellor tended to our practical needs and kept the program func-
tioning smoothly and was assisted by Betty Hodge. A. L. Peirson and Dorothy
Berthel helped with the administrative and financial duties. We are all
indebted to them.

Support of the program by the Office of Naval Research, the National
Science Foundation and the Woods Hole Oceanographic Institution's Center for
Analysis of Marine Systems is gratefully acknowledged.

George Veronis
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I. BASIC DYNAMICS OF THE LARGE-SCALE GEOSTROPHIC CIRCULATION

IPeter B. Rhines

INTRODUCT ION

Recent evidence indicates that the present circulation of the ocean is
best viewed as one of a wide ensemble of possible states. In the broadest
sense, the circulation of the ocean involves complex interactions with the
land masses (over geological time) and with the atmosphere over a wide range
of time scales. The interactions with the atmosphere are profound enough that
to model the ocean as isolated from the atmosphere is to severely limit the
model's ability to describe important processes, especially over the time
scales of climatic change. Some of these processes are shown in cartoon form
below.

, P,1. ASS. -

1o )6eeA lt b a (A

"r--1 A. 6 V. r

In many respects, the oceans and atmosphere are similar dynamical

systems. Still, there are some great differences of which two are

particularly striking:

1) There are no lateral boundaries (above the mountain tops) in the

atmosphere. Accordingly, the atmosphere exhibits a zonal structure to a
greater degree than the oceans.

2) There are significant differences in the forcing of the two
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systems. The oceans are primarily forced from above, i.e. wind stress and
thermal forcing. (There are exceptions such as tides, boundary mixing,
and geothermal heating.) Since the oceans are stably stratified, this
makes it very difficult to ventilate the deep oceans. The atmosphere, by

contrast, is heated below from infrared radiation and heated internally by
condensation in tropical cumulus towers. This leads to a large convective
cell (in the average sense) in the tropics, which influences the circula-
tion globally through its efficient transport of heat.

While important features of the oceans' circulation can be explored deter-
ministically (eg. tides, permanent wind-gyre circulation, deep thermocline
circulation), the response of the oceans is so rich in scales that much of the
structure can be more sensibly studied from a stochastic point of view. From
this perspective, one attempts to 'filter' the equations of motion for the
general circulation scale, say, and is left to parameterize in some statist-
ical way the influence of other (smaller) scales of motion. Were the interest
in a different scale, the parameterization would be different. Nor is the
parameterization likely to be faithful to the physics in a wide range of
circumstances. Thus the 'filtered' equations of motion for the general

circulation scale are not at all obvious.

Of particular interest to oceanographers is the manner in which a passive

tracer (marked fluid) evolves in a fluid flow. In this context we would like
to explore the mechanism of transport and dilution. Furthermore, the behavior

of passive tracers are useful as models of distortion, transport and cascade
of dynamical quantities. Especially interesting in this regard is potential

vorticity, which is conservative following fluid elements. For a review of
some of these ideas, see Moffatt, 1981.

Equations of Motion

For a derivation of the pertinent equations of motion see Pedlosky, 1979.

Mass conservation L =

where = density and u = (u,v,w) = east, north, up velocity, and t - time.
x,y anaz are east, north and up, and x,y and are corresponding unit vectors.

Momentum conservation

at
where - roation rate, p pressure,

- geopotential, V kinematic viscosity.

Introduc e the sca li ng -Tf L: C' ,*,A

The horizontal components of (1) then have the size O(t/.L') OCU/.L) , Ott)
0(), ) a O(v/jlL', A I.AjLH) respectively.

At scales where L P 10 km, T 1 1 day, TJl10 cm/s, we have

Ro = U/J%-L 1 10-1 Rossby Number

E = V/A& 4/4HN (1 Ekman Number

Only the 0(1) terms survive.
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5 This is called geostrophic balance.

Similarly, the vertical momentum equation reduces to OI
to lowest order. This is the hydrostatic balance.

V (1) implies

4AV 4 +2J4 J -) - %4 -Y V . V 1 (2)

where % 7u. This is the vorticity e|uation. For a homogeneous, inviscid
fluid '=i 7rV= 0. Notice that this implies that lines of constant J + 2%i
coincide with material lines -- a dye arrow initially indicating +
does so forever.

Consider equation (2) in light of the scaling given above. The twisting

termf ?0' p creates nearly horizontal vorticity since each of 17p V p

are nearly vertical. For Ro < 1, the largest horizontal terms are

Notice that this is consistent with the curl of the geostrophic equation,
which can be written

% V- Y 4A. 
(3)

Thus, the large-scale geostrophic and hydrostatic balances allow constant
density surfaces to lie tilted with respect to equipotential surfaces. In

fact, since horizontal pressure gradients and (until recently) velocities are
difficult Lo measure in the ocean, the dominant occupation of oceanographers
has been to measure ? so as to infer u(z) to within an undetermined
constant.

Scaling (3) 4 U oc (!L(J =0J for rapid rotation

and homogeneous fluid.

In either case we have uz - 0 for small aspect ratio. Continuity then

implies that wzz - 0. This is the Taylor-Proudman approximation and Is a1 reflection of the rigidity imparted to the fluid by the Coriolis force.

Kelvin's Theorem with Rotation

Define 4 L., ( V unit vector tangent to C). (4)

_+-A

ICM

1I
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Take C to be a material surface. Then
Note: , %A.dAA LAk.j-6

Recall:

Take = . Substitution

Using Stokes' Theorem -
where n = unit vector normal to A.

Take C to lie on a constant density surface % 7 - (M

where A = area enclosed by the projection of C onto a plane perpendicular

to fl , with the sign convention that A is positive if . c >o

and conversely.

Note: (1) It is not obvious that viscosity is negligible for long. As the

contour distorts, gradients become sharp enough for viscosity to
become important. Thus, when the contour distorts to such an extent

that significant gradients exist on a length scale NIJL)

viscosity becomes important. See figure below.

0 :P 0 >, length scale - (0.
C,

(2) Although C is a material circuit, it is not necessarily true that P
indicates a systematic (Lagrangian) motion of fluid particles or a

systematic Eulerian average rotation in a fixed spatial region ini-

tially coincident with C. In a later lecture, in fact, we will pre-

sent an example where the systematic motion of fluid particles is in

the opposite direction to the sense of circulation as defined by (4).

(3) Note that when C folds over causing its projection to intersect

itself, A may become negative.

REFERENCES

Moffatt, H.K. 1981. J.F.M.. 106.

Pedlosky. J. 1979. Geophy. Fluid Dynam., Springer Verlag, N. Y.

NOIS SUBMITTED BY
MARK SWENSON
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II. POTENTIAL VORTICITY AND THE CIRCULATION

Peter B. Rhines

Spherical Shell

Since r the sum of planetary and
relative vortex-tube strengths, Kelvin's theorem
implies that if north-south motion should occur,
large relative vorticity would result. If the time scale
of the north-south motion T is fast enough, the
'rigidity' constraint is broken by stretching and
bending of columns of fluid. This allows the

motion of the fluid to deviate from the zonal
free geostrophic contours.

We may rewrite Kelvin's theorem as

at where z= vertical unit vector,

Thus, for a small disk of fluid, we have

The thin domain and heavy stratification tend to confine the disk to constant
z; thus 6 A **

AA

1- I-= = -j ^ - terms that describe verticle motion

where 4-1_ o

Note: It only takes slight tilts of the disk to cause the 'other terms' to
become significant. Slopes that are observed in the density surfaces of
the ocean are of this order.

Potential Vorticity

The natural differential version of Kelvin's theorem replaces A by an
equivalent measure of 'height' or 'thickness' changes between marked constant
density surfaces (see Pedlosky, 1979).

For a single homogeneous layer of depth h this becomes

T where f - 24fL sin *X (lb)

A quasi-geostro ic version, Boussinesq, appropriate to meso-scale dynamics Is
f 1 ?) (1c)

S0
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where = streamfunction C pressure and
- ;L fJo fzy , C -

where we have assumed that the perturbation pressure is hydrostatic and haveinvoked the P -plane and Boussinesq approximations. This formulation is notappropriate for basin wide flows since the assumptions:

(1) N2 - N2 (z) only,
(2) fo - constant,
(3) Cartesian geometry,

are all inaccurate. Neither is it appropriate for flows with length scales
less than the first internal Rossby radius of deformation.

Boundary Conditions

A(a) Vertical 'coast'. U. V % O '*> q K)--o(free slip) at the boundary.
Note: This says tnat density surfaces must be level at the coast. Therefore

it cannot cope with thermal sources at the boundary unless you explicitlyinclude internal Kelvin waves or diffusion layers. Thermal sources thusact as a singular perturbation to the geostrophic equations. In a layerof thickness w NH/jf, Kelvin waves endeavor to level off the coastal
density field.

(b) Isothermal lid. LUV =0 => /0' /A.~t+jl =0 at z = 0.

(c) Isothermal bottom.
t.- at z - F (due to a linearization)

where h = H + h' and H - constant.

(This is seen by using the density equation in the quasi-geostrophic context,

Special Limits of Potential Vorticity, q, whereD%/Dt in (labc).

(M) L L) .I AI - Rossby radius of deformation

=> %= 4 0&/o for ocean basin scale flows.
(ii) Thin, homogeneous layer, /P - constant and Ro S/H1 where

h - H + 5 h - ocean depth. In the layer,

G~
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(or, VC for a layered fluid, where h = thickness of constant
density layer.) If we imagine the large scale ocean circulation
to be steady, these simple large scale limits

away from external mechanical or thermal forcing. This suggests that maps of
mean geostrophic contours q - constant on potential density surfaces will beIq
interest ing.

More generally, we may consider a potential vorticity balancL that Is not

conservative. D

(2a)

where F = external forcing and A - dissipation. Dividing this equation into

eddy and mean quantities we find

+ LAIq k ~( 2 b)

in the equation for the perturbations and

~ ~ (2c)

where q = q + q' and u -* + u' and ( ) defines an appropriate averaging
procedure. Notice that, even in the absence of eddies, the mean flow has a
fundamentally nonlinear nature since the flow paths depend on the strength of
the flow. In energetic flows, where eddy activity can be large, (2c) describes
how the mean flow Is driven across q contours by the eddy transport of poten-
tial vorticity. Equation (2b) describes the eddy field. The terms on the
left hand side represent geostrophic turbulence. Furthermore, the q field pro-
vides a restoring background field for perturbations in terms on the right

hand side which represent Rossby wave restoring effects U .4 %Z 0
or mean flow instabilities It 17% = 0

Note: F, A represent the effects of boundary forcing on q,/* which are the
result of a complex series of feedbacks between the oceans and atmosphere.

As appropriate to the limits of large scale ocean circulation (see special
limits of q), q and p are conserved on flow lines in the thermocline equa-
tions. These can be written as a single partial differential equation in a
variable M such that Mz - pressure (Welander, 1971)

where - latitude, longitude,

X M

I



Note: (1) linear 'density' diffusion adds the term

where u.0'-- o defines the diffusivity, k.

(2) A slow time dependence adds the term Mzz t .

The density field (or the height field of constant potential vorticity
surfaces) is a streamfunction for D S where M = horizontal velocity.
If the deep water were at rest, this would also be a streamfunction for u
itself.

But, more generally, the importance of w shows that important 0(l) devia-
tion of u from 1 p occurs in the subtropical gyres. This is the 'downhill'
flow in the subtropical gyre, where wind pumping is downward. The horseshoe
shapes of the % surfaces (plotted on constant z) and the constantisurfaces
(similarly plotted) are displaced in such a fashion that there is a downward
component of flow everywhere in the gyre (except the western boundary layer.)
Figure 1 shows density, 0j and streamfunction at three levels in a theoretical
wind-driven gyre of Rhines and Young, 1982. The driving effect, the Ekman
layer divergence, is antisymmetric about the mid-line, so only half of each
picture is shown. The circulation weakens and shifts poleward with depth.

Interpretation of the general circulation of the ocean by considering the
intersection of ...."j. surfaces and C.oal5Z surfaces yields the
following qualitative picture, see fig. 2.
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In the deep ocean, the flow is weak and This places a severe re-

striction on the types of flow possible. The circulation must be closed by
quite strohg processes such as a western boundary layer. The expressways are
indicative of the thermohaline circulation. The flow paths intersect the
ocean surface in high latitudes - this is the sea surface 'window' for entry
of buoyancy boundary conditions.

The upper layers of the ocean have quite a different character. The upper
layer is characterized by wind-driven velocities which allows q-conserving flow
about the gyre, including the boundary layer. There is an injection of "new
fluid" at the outcrop window, but the volume flux is probably only about
1/3-1/4 of the volume flux in the gyre, indicating a large amount of recircula-
tion. In the intensive inner part of the gyre the relative vorticity becomes
the same order as the planetary vorticity. This breaks the Sverdrup restraint
on north-south velocity and leads to a "runaway" region. This explains the
vastly increased recirculation in that region. Below this region is the
plateau, which is a fairly extensive depth interval in which not only is q
'conserved' along flow lines, but also &jI)r 0. Rhines and Young (1982)
explain this in terms of Prandtl-Batchelor expulsion of gradients due to 'shear
dispersion' which tends to equalize values of a tracer along streamlines, see

following lecture.
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NOTES SUBMITTED BY
MARK SWENSON

III. DISTORTION AND ENHANCED DIFFUSION
OF PASSIVE SCALARS By FLUID STRAIN FIELDS

Peter B. Rhines

To gain intuition about the 'active' tracer, q, we first discuss a passive
scalar field advected and diffused with a background shear and strain field. (Fig. 3a).
We can write a velocity field as

U. Ui(0 %SIC.(3.1)

where the antisymmetric part of ./a.relates to rotation or vorticity and the
symmetric part relates to a pure strain field. Consider a passive tracer

!S(,t) which is assumed to obey the following 2-D advection diffusion
equation,

iJD /4 vi# (3.2)
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where K is the molecular diffusivity (further discussion is given by Young, et
al., 1982).

STEADY SHE AR

A first example is a uniform shear flow, U

%.Z) becomes

7t_ +P9 (3.3)

Take the tracer distribution to be striped, at t 
= o:

%( I=, I + 3 f,4- (3.4)

If there is no diffusion (X = 0), X9is advected, then we define the
advected coordinates,

Xf - d- t lb(3.5)

and the solution is

X9,= 4 I -kt s. - l) (3.6)

It is noted that the yocomponent of wavenumber in the Fourier transform of

increases as ke( t.

When there is diffusion (j-O), we try a solution of the form

- C .*, ' t (3.7)

This gives

4s -% (3.8)
a)t

Then the solution is [ { I (3.9)

In order to consider the dissipation of tracer variance 1 3 . , multiply
eq. (3.2) by , and integrate,

(3.10)
6t I

where the bar indicates an average over space. Now from eq. (s9),

lv ev%"  increases like 1 + 0(2 t2 until t = (Kk2 2 )-1/3 as

shown in the figure.
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as seen in eq. (3.11), the ordinary diffusion time is (k2) - I . On the
other hand, in the shear flow the increased gradients cause diffusive
processes to become important more quickly.

Then the enhanced diffusion time t* is (Ak2 o(2 )-1/3, which may be
written t* = (L2 /)P -2 /3 = (L/U)pI/3 where 9(= U/L, -L- 1 , and P =
UL/AC, the Peclet number. Thus for typically small & (P >>l ) shear-augmented
diffusion spreads the tracer along streamlines over a time intermediate between
the diffusion time L2 /9 and the advection time, L/U. If the streamlines
close upon themselves to form a 'gyre' thisyprocess acts to replace the
initial values Io(x) by a distribution -&I*) which is the (generalized)
average of 1% about streamlines * . If ) o , a second, slow stage
of adjustment occurs as diffusion of the tracer (locked to the * - contours
by the fast process) occurs, over times - L2/&. Under the right boundary
conditions the result is the eventual expulsion of gradients of* from the
gyre. T11is is known as Prandtl-Batchelor expulsion (see Dr. Young's lecture
this volume, page 135).

Now we suppose 19(Z, 0) is

(3.12)

- -
- -

The n

e.w (3.13)

.e.84
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SHEAR OSCILLATORY IN TIME AND SPACE

We consider the second example of the diffusion problem in the shear flow
which oscillates in time and space. Then we suppose that

= = ( u. WS c t o D (3.14)

Initial condition is as follows;

'& (- '0 -(0- )(3.15)

where X% decreases to zero as -P •

Define the nth moment by

"IX'O Q A(3.16)

then we have

< )'t - K < >y/(3.17)

<XO> t K < i>yy 4. 4A (3.18)

<K-1. -- 1 &'<t9>,l + L9 < > + 2 ( .9

and so on.

From eq. (3.17), we get

09> = constant (3.20)

Then (3.18) gives

- A~ ~ < > cc1'~/(3.21)

The solution is

IV1 /A (3.22)

4 exponentially decaying transient,

where * _ -m2/Aj Is the ratio of the diffusion time based on the y-scale
of the shear to the time of the shear.
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The second moment, which expresses the effective diffusion, is determined
by (3.1,9),

<(eo>il<(4 f UO a. 1 GMCA tk co i ' (3.23)

Now we consider a y and t averaged quantity 'ieI> , then from (3.23)

W - 1  4 (3.24)

Eq. (3.24) shows that the effective diffusivity is

Reff 1A 4- - 4i (3.25)

Effective diffusivity is as follows in the special case

AI teff -- + €.Z (3 .26a)

-- (3.26b)

nteff = ' + tA-D ( 3 .26c)

The maximum of Jef f occurs at K* 1 for a given velocity field. When
K* 1, the effective diffusivity is the product of a particle excursion
(Uo/w ) and a particle velocity U0 , which is rather like a mixing length
result. If AL))* we recover the inverse dependence of X as Taylor (1953).

STEADY STRAIN

As the third example we consider diffusion in a strain field (Batchelor,
1959)

JK (3.27)

Then the advection-diffusion equation (3.2) becomes

at-) 
(3.28)-t
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A particle initially at ( Y,y* ) moves to X eo €--  )

It is noted that one-particle diffusivity is

Take the initial distribution as follows

09x~) (L % I )4 (3.30)

The advective solution for K 0 is

and the full solution, for 9 ( 0, is

(3.32)

for long time

X9- (3.33)

If k -m,

(3.34)

The dissipation time t* in this case is given by

-"g:. - L - (3.35)

Note the qualitative difference between the behavior in shear and strain
fields. A stripe of tracer in a steady shear increases its length
like +, by shear, and its width like tl/2 by diffusion. Then its area
grows like t 3/2 and hence its peak concentration decays like t-3 /2 . On

the other hand, in a strain field, the x-width of a single strigp grows
eventually like 4L . The y-width aproaches a constant o% (,/3 . Then
concentration L9 decreases like e "Vi•

Note: the x-width of the stripe - tV ' while its y-width - const.

. . . . . ...'I I ll4 [ l/ l II I I . . . ' " . . . " - - - - - . .
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MARKOV MODEL OF VELOCITY FIELD

Finally, we consider tracer dispersion by taking patterns of large-scale
shear and strain, and adding random time-dependence (Salmon, 1980). Then we
introduce the following flow field,

where I is the vorticity and So and To the strain rates. The model is a
reasonable idealization of geostrophic turbulence, which has a very steep
wavenumber spectrum and non-local Interactions. We consider a white noise
process.

< 1,oc ( A (3.37)

(&> < Lt' t 2. D,,'(-t-'
(3.38)

If 4 is isotropic then 3>, and T are independent and

1y = .-.r SL (3.39)

where .5)- S LE( ) dk is the total enstrophy.0I
Define the initial condition as

0) 
(3.40)

For AO distortion equations are

4-~ I -(3.41)

dt-
where Aij - .A/ j . A line element ' similarly obeys

AA C (3.42)

It is noted that

Co (3.43)

From (3.36), (3.41),
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This system leads to a Fokker-Plank equation for the joint probability

density - f( A21 t) of the wavevector,

:D 1,1 (3.44)) (,,+

where k, y are polar coordinates, k = k(CaSr'Sj-r).

The moments kn k are found by forming 4z .4q

Ms o %__=____ ___t

Also

The process is not like diffusion but more like an exponentially rapid cascade

to small scale. It is noted that two steady solutions exist

corresponding to equiprtion of variance, and the "k-l" spectrum of a
passive scalar in an inertial range of turbulence, respectively. Yet here the
model (large-scale strain) is diametrically opposite the local-in-k

presumption of inertial range theory.

This result motivates yet a simpler problem

S=

Let y = lnv. then

The Fokker-Plank equation governing the probability distribution P(y) is

where 2D < ( -(t't' >A))t. The solution for the point source is

-) pTy.t) ~ ; 4  eAV4(

where G . The expression for P(-A,t) is log-normal,

fLjlIU

1
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IV. MORE ABOUT DYE AND PARTICLES

Peter B. Rhines

Wave Crests

Wave crests can behave like stripes of dye.

Consider a wave with intrinsic dispersion relation, it 7 4 -A

Add doppler shift of advecting flow Xi , -'

Using geometrical optics, the equations for position and wive-number are:

j z - -11 P 4 U.
___ L

at -

Note that for small group velocity ) wave crests behave like a passive

scalar in a shear flow.

Exercise

Consider surface gravity waves with dispersion relation

~/L~Ld4/ 4-
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where V = ot y. There is a weak vertical velocity present, but it can be
ignored here. Use the ray-tracing equations (*) above to solve for t(t) and
X(t) for .a wave packet released at yo = O(y = 0 is a stagnation point of the
Tlow). Show that the wave packet motion reverses from two effects: increas-
ing mean flow as y increases, and reduction of C . Show that the packet
turns around where the current velocity = 1/2 (initial group velocity).

Effects of Adding 3rd Dimension

In a stably stratified ocean, fluid motion is predominantly along surfaces
of constant density. This is the justification for working in only two dimen-
sions. However, even a weak vertical diffusivity, Kz, may be important in
the presence of large vertical shears.

Consider, for example, the Okubo-Taylor problem from the second lecture

rotated into the x-z plane. Now

U = cos MZ cos Wo t

and because the energy spectrum is dominated by inertial oscillations let
= f. This velocity structure, combined with nonzero Kz will lead to

tracer dispersion, even if Kx = Ky = 0.

The presence of vertical shear is also important in interpreting observa-
tions. Drifters, for example, have parachute drogues that hang about 100 m
beneath the surface. Shear between the surface and 100 m will cause the
drogue lines to deviate from the vertical. Lines with different slopes will
cause their drifters to sample the flow at different levels, and thus move in
different directions. This leads to a sort of "instrumental Stokes drift" for
the dispersion of floats.

Shear dispersion will also contribute to the spreading of dye patches,
especially in shallow water.

Consider the dispersion of a tracer from an Eulerian viewpoint. Mixing is
along isopycnals, but isopycnals undulate, and measurements made at fixed Z
will sample different density levels at different times.

Measure #(x,t) and the Eulerian velocity uE(x,t). The time averaged

flux of tracer is typically written
6- t

This is the "horizontal" flux along a potential density surface only if
isopycnal layers are rigid. But mesoscale eddies cause undulations of
100 m amplitude.

To do the bookkeeping correctly at fixed (x,y) it is necessary to keep
track of variations in layer thickness. Thus the tracer flux in a layer
between two isopycnal surfaces is

- % + &
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where h is the layer thickness and the overbar represents a time average

within the thin layer. See figure 3b.

term s a Sokescorrection to the mean transport t

4 - is the standard isopycnal mixing Pterm, representing the eddy flux

of tracer variations as seen on an Isopycnal sheet of fluid with zero thick-

ness in the vertical. The two remaining terms tend to be smaller if

h' ,h<.
The point is that the standard isopycnal mixing term is only one of five

terms in the transport formula. The Stokes correction term could be large if

there were systematic motion of boluses of fluid at some level. In this case

transport would depend on large vertical gradients of the mean concentration.

It would thus behave like an off-diagonal diffusivity, lateral transports

resulting from vertical gradients. This 'bookkeeping' is :elated to the

transformed-Eulerian mean equations now being developed in meteorology (see

Andrews' lectures, this volume, page 99).

Particle Transport

The Lagrangian displacement vector of a fluid particle is

61 o)

where t is time, and X
o and to are the position and time of particle

release.

Z XL) is the average position of an ensemble of particles. In practice

this ensemble average is achieved by releasing particles from a point at

several times. This gives a valid ensemble average only if the ocean is

statistically stationary (or nearly so) and if the release intervals are long

compared to the characteristic time-scale of the meso-scale eddies.

The probability density for locating a particle at time t and position X is

and-A

The Lagrangian mean velocity <!tL> is not adequate measure of tracer

motion, because dispersion about the mean is large. In the ocean the kinetic
energy of the eddies is generally at least as large as that of the mean flow.
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Lagrangian Diffusivity

The Lagrangian diffusivity L L

ii-

where QL is the Lagrangian velocity, XL the particle displacement, and
X° the position of the particle at time t = 0.

For simplicity let Xo = o.

Then < xL L> A

Now ,) Z o

where Rji( " ) is the covariance of particle velocities separated by time
interval 't ,

Rji is assumed to be stationary in time (i.e., it does not depend on
t). This implies, however, that the Eulerian fields are spatially homo-
geneous. Otherwise over time a particle could wander into a region of dif-
ferent kinetic energy, say, which would change Rji( 'IC

-. a
In the limit t - to the Lagrangian statistics converge to the Eulerian

statistics:

L> c,

Velocity correlations will decrease with time. The area under the curve
Rij('C) can be viewed as the Lagrangian diffusivity.

-- Lagrangian diffusivity

Kij can be split into symr.atric and antisymmetric parts.

where SIj = 1/2 (Ki + Kji) symmetric part
and Ai 1/2 (Kij - Kui) antisymmetric part.
The trace ii - I -- <

The antisymmetric part, AIj, is associated with 4(U, 3C i'Ki >the
"swirl" of the fluid particles. This is equal to minus the ensemble angular
momentum, 1K
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I
The mean square particle dispersion

For short times Riu is approximately constant, and

(LA >
In other words, for short times decorrelation has not occurred, and ensemble

particle dispersion is linear in time.

For long times

IL -i - (random walk)

Typically one expects Q-U L'V dZ - a constant. But for a

saturated wave field this constant is zero. This is also the case in a closed

box, where dispersion is limited.

Typically particle dispersion follows this sequence:

1) Linear dispersion at short time CIx.I ) t,
2) Parabolic or random walk dispersion at long times e:jx- tI/2 ,

possibly followed by
3) saturation .jj'P- constant.

Envelope of Particle Dispersion

I Note: In realistic flows there may be several stages of saturation as

the ensemble of particles fills out successively larger domains of flow,Isuch as the nested set of gyres one finds in the oceans.
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If there is a mean flow, as well as turbulence, the picture will be tilted
relative to the axes, and the particle envelope will move linearly away from
XO. Obs'ervational examples of this dispersion envelope are shown in Figure
4, from experiments involving neutrally buoyant floats.

The time for the mean flow to emerge from the turbulent dispersion is:

where

5 (ZJ~z cZ ~

Note: The interpretation of Taylor's diffusivity is difficult if a curved,
sheared mean flow is present. How does one separate eddy-and mean- ?
Shear dispersion intermingles the two.

Note that the Lagrangian energy spectrum is defined by

In the zero frequency limit,

which is the Lagrangian diffusivity.

Stokes Drift

The Stokes drift may be defined by the difference between the Eularian and
Lagrangian mean velocities, 4UL> - (UE> • A Taylor expansion gives

for displacements small relative to the scale of UE. In this quasihomo-
geneous limit xL(t/xo, to) may be approximated as a weak function of x,
and a strong function of x-x0 .

But

so the Stokes correction is

8% 'L

< )KLJALL) L
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Fig. 4a SOFAR float tracks (daily positions plotted) from
the Sargasso Sea in the MODE-7.3 experiment (from Rossby and Webb).
The squares are 10 wide. The floats are nearly Lagrangian particles
at depth 1500m.
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the second term

)i C)t it

where a Is the disturbance amplitude.

For nondivergent flow

and so

to 0(C-1) '

Thus

In a pre-existing mean flow,<U? with curvature there is an additional term of

order

ui >

Since Xij - 0 at t - 0 the Eulerian and Lagranglan velocities are nearly
equal for short times.

Example: For surface gravity waves the velocity potential Is

4 = C e- 4ECW e-&A

The principal diffusivity is XXZ, expressing-the orbital aqgular momentum of
the fluid particles. 0

+ -

The diffusivity is this large, because for surface gravity waves there is no
separatio, between the wave length and the vertical scale over which the
intensity varies.

Note: The validity requires only that the particle displacement be
much smaller than the scale of variation of mean quantities. For
waves this means small steepness, while for turbulence It requires
slight variations in Jrj over an eddy diameter.
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In general, the Lagrangian velocity field is divergent:

One simple example is the dispersion of a dye spot in a closed box. After
a long time the center of mass of a group of dye particles,cXL(t xo, Cc)>,
will be found near the center of the box. Thus c- UL . will in the mean be
towards the center.

Another example is a spot of dye released into an eddy field (say, the
planetary boundary layer), near a rigid boundary. If W is the velocity
component normal to the boundary,

- b c < L> Pu

i.e., the average vertical velocity of all particles released near the
boundary is positive, yet the Eulerian-averaged vertical velocity vanishes.

The correlation between Lagrangian dispersion and eddy activity can be
seen by observing ensembles of particle releases in the ocean and in numerical
models. For example, Figures 5 through 6 depict particle release patterns
from a two-layer eddy-revolving general circulation model of Holland (Holland
and Rhines, 1980). The model has three layers, an eastward jet in the center,
and two recirculating gyres. Figure 5 illustrates the tendency for particles
to remain in their half of the domain, as well as the greater dispersion near
the jet than in the recirculating regions. Eventually, the entire lower gyre
gets covered. In Figure 6a the Lagrangian velocity is seen to be most clearly
defined in the recirculating regions. Figure 6b shows the convergent nature
of e<uL> within the gyre.

Figure 7 demonstrates some of the hazards in relying on the Lagrangian
mean velocity alone to describe particle dispersion. Thest are numerical
simulations by Russ Davis of particle dispersion in one dimension by turbu-

lence. In the toD curve the turbulent energy is spatially homogeneous and the
particle distribution is symmetric about the origin. In the lower curve,
however, the turbulent kinetic energy increases to the right. Thus particles
which initially move to the right experience greater diffusivity than those on
the left- generating the long tail on the right side of the distribution.

In the top curve the Lagrangian mean velocity is zero. In the lower
curve C UL> is directed to the right since the tail pulls the center of
mass of the distribution in that direction. The mode of the distribution, on
the other hand, moves to the left. Clearly < uL> alone gives a misleading
description of the motion of this particle distribution.

Example: We can tie together some of the ideas of one particle diffusivi-
ties, eddy fluxes, and their ambiguity with Lagrangian-mean flow by the
following thought problem. Suppose a 2-D incompressible iluid is executing
perfect wave motion with particles moving in clockwise circular orbits, BE =

0. At t - o a tracer gradient,

- i i I I I m .. - - M i i , ,, , . .
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Fig. ra. ro
The Lagrangian mean displacement :'X(t;t* > for

several release points x. In upper panels the ensemble mean

shows the sense of the gyre well but release points in more

turbulent regions (lower panels) are dominated by mixing and

seek out the centroid of the gyre.
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is impressed on the fluid. Notice that a mixing-length calculation would

suggest an eddy transport of V9 in the x-direction:

where the averaging is, say, with respect to fast time.
Now

O _ A-- f. j = -

near the initial time. Since X is just the orbital angular momentum of a

particle, the x-transport is nonzero. By drawing a sketch one sees indeed,
X6and ' correlated.

Ah, but you say it is a nondivergent flux, hence inconsequential. So, now
modify the problem by placing a rigid wall at x = o, where t4 vanishes. Let

the orbits increase from zero in some manner, to the right of the wall. Now
, is divergent, and ;F changes with time. Yet paradoxically, at

lowest order we still seem to have closed orbits and perfect conservation
of 1& following these orbits' To resolve the paradox note the identity

so that X )

using (4.1). Thus the orbits must in fact be slightly open, a Lagrangian

drift moves particles toward negative-y, carrying * downgradient via

ty The Eulerian observer instead sees an eddy flux toward
negative-x alon - contours, and vanishing mean flow, )9/3t - %.A--1, 11

Both agree that - _

T- >o
but the observers differ as to why.

- ~ I'

/ ....... rO, W°)o

.- - - - - -

/
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NOTES SUBMITTED BY
Walter Robinson and
Theodore Shepherd

V. RETURN TO DYNAMICS

Peter B. Rhines

Much of the discussion up to this point in the lectures has focused on
small-scale structures as turbulence stretches out tracer concentrations,
increasing gradients and leading to diffusion (Figure 3). But a significant
problem for the oceans concerns large-scale transports and the resulting
concentrations of tracers. An example is that of tritium, a by-product of
atmospheric nuclear weapons testing that is injected into the ocean at the
surface. Following injection, the tritium mixes principally along potential
density surfaces below the surface. Depending on the "topography" of these
surfaces, the tritium concentrations can take on a variety of forms. Figure 8
shows a set of tritium profiles for different 1T9  surfaces, according to
Sarmiento (1982).

QuasiGeostrophic Eddy-Mean Flow Interaction

For an active or Vassive tracer q, divide into time mean and deviation
components q-_.t + q . Then the advective-diffusive equation leads to

where A represents dissipation and F forcing. If time mean quantities vary
slowly in space, then is negligible. Then for no external
forcing, the principal balance for stationary flow is between down-gradient
eddy transport and dissipation:

Now introduce a quasigeostrophic, multi-layered fluid. The momentum and
j potential vorticity equations are, respectively,

- t
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where ~ J 4 ,V~~, ~is a vertical unit
vectorVH the horizontal gradient, and q the potential vorticity in an
isopycnal layer of varying thickness, hi(x,t). X and F represent external
forcing, D and & represent dissipation.

After averaging, hjqu is the dominant rotational eddy stress. It can be
written as

where the terms on the right hand side represent, respectively, the net

Lagrangian Coriolis force, the lateral Reynolds stress, and wave drag on the
level interface. u = (u,v) is the horizontal velocity.

Averaging in x leads, in the inviscid, unforced case, to

while ensemble averaging yields

where q = Q+q', 4q'> = 0. The right hand side of the latter equation can be
seen as the 3-D, time-dependent response to eddy forcing. Without time
dependence (that is, in the statistically steady case), the equation describes
what might be called the turbulent 'Sverdrup' balance, with eddies driving
fluid across the mean geostrophic contours, Q = constant. Maps of Q are funda-
mental references, as free flow tends to proceed along Q-contours, forced flow
across them.

In order to predict the nature of the eddy stressl£'u',> one must consider
the following factors:

1) Statistically steady stirring of the mean gradient VQ (use

mixing-length arguments).
2) Memory loss of q due to the enstrophy cascade.
3) Temporal growth and decay of eddies.
4) Spatially advected growth and decay of eddies.
5) Effect of external forcing, F.

One can use the Rayleigh damping model, Lh -Rq + F, to introduce memory
loss from dissipation and the enstrophy cascle. If F = 0, then q-P q. Then

I- - Ru -Lt
>>4k

displacement over one relaxation time.

If F - 0 and R <4 LA- (inertial time scale)-l, then (q'u':=-jj)-

where ij - < uj(x,t)x; (t)> is the 'arrival' Lagrangian diffusivity And

is like Taylor's diffusivity.
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Note the difference between ' arrival' and 'departure' statistics. The

former considers Ke,(L c' ,) ,that is, particles arriving at fixed point x-• L

from various origins xi(Lwhile the latter considers x (t I x(O),tO),
that is, particles departing from a fixed release point x(o). The two

Lagrangian velocities can be equal and opposite in the case of motion in a

gradient of turbulent energy, for example.

Example:

Mean wake induced by a Rossby-wave packet in a 2-D homogeneous fluid.

Expanding in wave steepness with 'Q = (0,p), gives

0(%). Kp 4 u,9

where -

The eddy stress is then < 1[.I . r )[
and this represents the q-transport rotated byil/2.

For a wave packet, A-'A i ' whence one can write

where E is the kinetic energy density {.- I''. Note that the eddy stress

is the gradient of the kinetic energy density reflected about k.

As the wave packet moves north, fluid is pushed westward as the packet

approaches, and pulled to rest as the packet departs. Although the mean flow
is ultimately unchanged, low-frequency Rossby waves radiate to the west.

Figure 9a gives a schematic picture of the mean flow tendency from the eddy

stress; numerical simulation results are shown in Figure 9b, which demonstrate

the westward and eastward mean flow induction and the Rossby wave radiation.

An entirely equivalent approach is that using Taylor's diffusivity form,

where the Lagrangian diffusivity of the wave field is

written in 'wave-crest' coordinates (x',y'):

X-'>0 as the wave -cket approaches (downgradient mixing) and , 0 as
the wave packet deparcs (upgradient mixing). So Lagrangian diffusivities need
not represent irreversible mixing. Note that Jj is traceless, except for
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Fig. 9 Above: potential vorticity transport (solid arrows) in a Rossby wave
packet traveling north (double arrow is group velocity, wave crests
dashed). Below: large-scale flow induced by this transport. The packet
is invisibly small on the east side of the induced flow. To the right is
shown the zonally averaged zonal flow. The above theory would predict
the westward lobe with counterbalancing eastward lobe left behind at the
origin of the packet. Here viscosity smears out the wake.
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transient situations. The off-diagonal terms describe rotary motion of the
particles. Several forms of the induction equation are as follows:

t \7

- t = 4
where Indicates rotation through an angle, equal to twice the angle
between k and east, minusV..

Scale analysis shows the principal response to be 'Sverdrup' in the
vicinity of the packet, that is

>e' Z,>= <,

In this region, the Stokes drift, given byc)&,j/Jx; just cancels.Va,) , leaving
nearly vanishing cross-contour Lagrangian mean flow:

V >- < -e K 0 L/ _L

where Lm is the scale of variation of mean properties; i.e., the packet scale.
However, significant Lagranglan drift does occur in the radiated waves, where
there is no Stokes drift to cancel <VE> . But unless the geometry is
re-entrant (that is, 'atmospheric' as opposed to 'oceanic'), the induced flow
can only achieve the weak level of < uE>. - K , while the cross-contour flow
is still weaker by the factor (L__).

Example:

Zonal flow induction by a moving corrugated wall.

One-layer, homogeneous-in-x. There are three different 'mean circulations'
in this example!

The governing equation is V , , (,a" C 1, o =o

Averaging in x gives

A. t-

S using Taylor's diffusivity. This gives an
Eulerian mean circulation, above the maximum
of topography, valid for both turbulence and

waves, of -= 17%A r',. ( , a '
As the Rossby wave front progresses northward, the region of westward Eulerian
mean flow expands with it.

For waves, the Lagrangian mean flow is then given by

"' .j
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I
With weak damping, or with only a slow increase in the driving amplitude,

Va/y will be small, O(L -Lm 6  . The difference between u and
u is accounted for by looking at the fluid between topographic peaks,
which was ignored in computing u.

But now consider a third 'mean circulation', the Kelvin circulation.

integrating along a contour C moving with the fluid, which originally lay on
a latitude circle ( C is assumed to be closed, as it would be in a polar
stereographic projection). Then one finds P according to

A & &I by circulation theorem where S is the area
" --" 'north' of C •

- 5~4  (~c4~p~4because C is a material surf ace.

o..v
from the barotropic potential vorticity

__ equation, since q - Vr.1-f* t- Py is
conserved at each particle.

Therefore I-- j' j" AK and if L is the length of C , the average
Kelvin circulation is given by

- ( )
L

which is equal and opposite to the Eulerian mean circulation.

This emphasizes the importance of defining circulation unambiguously.
There is no contradiction, since 14 represents neither the time-average motion
of any fluid particle, nor the time-average motion at a fixed point. In fact,
this sketch of vorticity induced by north-south particle displacement suggests
the senses of both r, and (£

plane .-
Rossby ,•
wave, %

dye line originally on latitude line
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Note that if tile wave maker exerts no net force on the fluid, then the
total momentum of the flow must be conserved:

-A .

But at unforced latitudes, u is westward. Thus a sharp eastward jet can be
expected to develop at the latitudes of the forcing, increasing in magnitude
as the induced westward flow expands. (Figs. 10-12).

In numerical circulation experiments in a box, eddies are generated by the
wind-driven eastward jet and by the slower westward reverse circulation near
the latitudinal walls. Under quasigeostrophic dynamics, without eddies there
could be no mean flow below the surface layer. But with eddies there is the
possibility of a vertical transfer of vorticity by means of wave form-drag from
the sloping of the interface. A dramatic case is found in Holland's recent
simulations using a 3 layer x 4000 km x 4000 km quasigeostrophic model. The
gyre circulation in the top layer is wind-driven, but the gyres in the other
levels are generated by this vertical vorticity transfer via eddy wave-drag.
It is interesting to note that potential vorticity is homogenized over most of
the middle layer by this eddy activity; the n y 'ramp' is altered to a plateau
bounded by sharp gradients near the walls. Figure 13 shows the contour plot
of potential vorticity in the middle layer. Fig. 14 shows an analogous plot
for simple two-dimensional turbulence. In either case, the resemblance
between q and a passive tracer is striking.

This exclusion of potential vorticity from a large region of closed
Eulerian mean streamlines is an effect of mesoscale eddies (via shear
dispersion). It is the analog of flux-expulsion in magneto hydrodynamics, and
may control the general circulation. It illustrates value of passive scaling
to dynamical studies.
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t=5.0 Mo. t=6.2 mo.

Fig. 10. Time-sequence of streamline patterns showing rectified
zonal flow in a computer simulated, homogeneous, beta-plane ocean.
The forcing is purely oscillatory, a Gaussian wind-stress curl at
the center of the basin. The domain is 2000 km. wide with periodic
boundary conditions on velocity. The region o.f forcing is 250 km. wide.
After forcirng begins, the wave/eddy field becomes establishied, princip;Ally
we:.t of thie forcingj and begjins t~o rectify. An eastward jet forms beneath
the forcing, westward flow elsewhere, as in the theory. The net east-west
transixort. always vanishes.
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Figll 'Current-meter' record to the east of the forcing
region in figure la. The arrivi of waves, and the growing
mean eastward flow, are visible. Solid curve, east-west; dashed

curve, north south velocity.
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Ilower layer ./ .. ..
streamlines
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t=0.12 mo. t=10.6 mo.

geostrophic ...."

contours

p ig. 12 An experiment jutft like figure 1, but with realistically
rough bottom topography and (2-layer) stratif~ication. The upper
panels show upper-level and lower-level streamlines near the beginning,Iand at 10.6 months. Now tht: rectifiod flow is dominantly westward due to
the bottom-topographic draq. Noto the resembl1ance of the large-scale flow
to the cjeostrophic cttotir!;, f/t --- cun!;Lant.
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Fig.I'tIn two-dimensional tulrbulence the vorticity is an 'active'
tracer which cascades to large wavenumber.
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PARTICLE MOTIONS IN STRONG WAVE FIELDS

Glenn Flierl

Drifters of various types (Swallow and Sofar floats and surface drifters
in oceanography; ghost balloons in meteorology) are used to characterize the
mean and mesoscale motion in the ocean and atmosphere. In both of these situ-
uations, steep waves are present. For the ocean particle speeds (u) may be 2
ms- 1 while typical phase speeds (c) may be 0.05 ms-1. For this situation
the Stokes' drift may be large. The Stokes' drift for very simple periodic
flows and some geophysical situations where u ; c will be considered. Inter-
ested readers can find more detail in Flierl (1981).

First Example

These are two simple problems which illustrate wave-induced mean drifts.

The first example concerns the case of a longitudinal motion with flow
parallel to the direction of the phase propagation. As an abstraction
consider a square wave of wavelength ). , velocity amplitude uo and phase
speed c.

A

Zonal velocity c L if

at t = o as a _J- LocA -J

function of
zonal position x

"X-o

The mean Eulerian velocity UE at any point is zero. The Eulerian wave
period TE - N/c.

Consider now the motion of a particle placed at location x = o at time t -
o. The position of the particle can be calculated by solving

x - u(x-ct)

Shortly after t - o the particle is moving eastward at speed uo while the
wave is translating at speed c. The trough of the wave, beginning at point x

- - V  marked with a + on the figure above), will catch up with the particle
at times TF such that - + cT - uoTF or

2(c-uo)
with the particle being at location

Lksc- X
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-F-

During the next time period, the particle is moving backwards with respect to
the wave so that it collides with the face of the next wave (the point *) in
time TB

- + cT F + CT B  UOTF - uoTB

or

TB

and the particle is at location

Clearly the particle spends more time in the region where it is moving In
the prograde direction than it does moving retrograde TF > TB so that the
net displacement over a Lagrangian period is positive. Therefore, as this
process repeats, with succeeding waves, the particle drifts in the prograde
direction at a mean speed.

X ~C -4. -

where E is the wave steepness Uo/c. The position of the particle as a
function of time is sketched below for uo . l/k.

Ix
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While this discussion illustrates clearly the reason for the Stokes drift

-- the particles spend more time in the prograde part of the wave than in the

retrograde part -- there is a much simpler procedure for computing the mean

Lagrangian velocity, originating with Ursell (1953).

Consider the equation governing the position X of the particle in a

reference frame where the wave is stationary (X - x-ct)

X = u(X)-c

6

X position after initial position
time TL  .

From this equation, the time necessary to move through one cycle of the wave

(the Lagrangian period of the motion) can readily be calculated

A-- = & -c TcT.T.-T

so that the net drift rate is

(This is a general result which applies to other examples.)
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A more realistic but still a simple example is

Li.-= LAO C,> I-

a N = (ao co, g -,-)d

so

T
LA~ Z i

and

C- L  C c 112Q/L)

For weak waves, - c 1/2 ( ) which is roughly Stokes'
approximation

2.0

V

EXACT

1.0

0
0 1.02.

A... ,2.0
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For uo > c, there is a stagnation point in the flow (in the moving
frame) through which particles take an infinite time to pass. Thus uL - C.

Two Dimensional Wave Fields

The simple formula above can be applied directly to the case of a two

dimensional steadily propagating wave

by a simple transformation to coordinates (X,Y) moving with the wave.

X = x - ct, Y = y

The particle coordinates evolve according to

S=- -4' C 4  (?Y
and 4, (X, )

where t- tL-y is the streamfunction in the moving reference frame.

Particles do not leave 4 = constant lines thus Y = y(X)
4c' ., ) () ) - .7(X) -- 4-(xo" ,-) i-

Solving this equation for y(X) and adapting the formula above for TL
gives

Note that the Stokes drift will be nonzero whenever TL ' TE. But now we

shall see that it is possible to have TL 4 TE so that UL is retrograde:
this is the second simple case. Consider the u velocity on two streamlines
sketched here

- -- I...
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The velocities -are

0 _________ _ _

Lk - - -----
0

For particles near the wall (e.g. streamline 1) &k(X)Ic -tcos X and
Z;,/c -1 CL i.e., the drift is prograde. For particles near the center of
the channel, however, (streamline 2) the velocity is always retrograde ( >

o) L/k/ -E% ['L.- XJ.The particle always sees eastward velocities because the
north-south flows push it to the southern side of lows and the northern side

of highs. The average Lagrangian drift is _ - which is retrograde.

Surface Gravity Wave Problem

For particles at the surface of the fluid y(x) = 9(x), cy = c-u. The
kinematic boundary condition at the surface is

and Bernoulli's equation gives

These equations lead to
1+

L  4

For weaker waves, use Taylor expansion to get

CL

However, II A is not zero and it is necessary to first solve the first
order problem before proceeding. It is more convenient to use

- A~ ~)[v~. Iof A%/ ILI (0 3L

X d
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ThE n = (H is depth)

whe n Iis the wave amplitude. 
L

For irrotational motion we can prove (c 0 Since (Irrotational)

L  A--

but

i .e. L' Csince

1 /w -7- 1-

TL >T

and

Return now to the case of periodic Rossby waves in a channel and consider
the release of a line of particles at X = 0. Using the methods discussed in
the above examples, the positions of the particles as a function of time can

be evaluated. In the fixed and moving frames the trajectories as shown in
Figs. 1 and 2. For small f , the Lagrangian drift velocity UL is mainly a

function of y but as E: increases _dL becomes a function of the initial
longitude as well. For e > 1, there are trapped regions in which the parti-
cles move with the wave and UL = c and except for a thin layer near these

trapped regions the rest of the fluid moves retrograde in a narrow band at a

rapid rate.

The trapped particles drift at speed c because they circulate on closed

contours: thus after one Lagrangian period A X = 0 so that

XT , c- T L cTL

TL
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I
FIXED
FRAME

G.I

Fig. 1 "Spaghetti" diagrams of particles set in a channel wave along X 0.
The lower figures show the pictures viewed in various moving frames
of reference (x(t)-ct,y(t)).

C '0.2

.0-

-.02 -

05 3-0

050

* O 5 9 \ \J l

,5.0
.9

15

W.' Retrogrode

I- Progoode

Fig. 2. a) Lagrangian drift rate as a function of initial position
(xoYo) for various wave amplitudes E . A segment of the
channel from x - 0, 2-9 ; y - 't 11/2 is shown. The contours are of
v, the labels above each sectiqn are C values. (b) A different
view. The abscissa is o - (oo The shading
represents trapped fluid. Positive drffts are retrograde;negative

ones prograde.

G
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The next figure shows the simplest measure of the retrograde speed

10" 2 ."

v (0)

.WE,

(b) Ii"

10

(i ip* \

Fig. 3.(a) Drift of the particle initially at (0,0) showing the accuracy of
the Stokes' approximation, the largest asymptotic term + "i 6 /21n 4 and a
more complete asymptotic approximation -1+ 1% 6 /21n(4 C- ). (b) Drift
normalized by the maximum fluid speed rather than the phase speed.

iA
-I0

20 A'J
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as a function of where K is the first elliptic integral function. Note that the
drift becomes essentially a constant fraction of the maximum particle speed --
the particle travels rapidly across the tops of the highs, down between the
eddies across the bottom of the lows and then back up. It spends about half
its time in the most rapid eastward parts of the flow.

The next figure shows the proportion of the area of the channel that is
trapped and moving with the wave.

1.0

0.5-

0
0 I 2 3 4 5 6 7 a 9 10

Fig. 4. Trapped area nondimensionalized by total area as a function of wave
strength Cr

The Lagrangian drift estimates suggest that care must be used in
interpreting dispersion experiments. In strong wave fields, particles set
even short distances apart may have very different average drifts if the area
of the setting overlaps a boundary of the trapped region. Also the inference
that might be drawn from the Stokes' approximation that v is independent of Z.
is not correct, so that a zonal line segment of particles will also spread
due to difference in drift rates. Thus, spreading of a patch can occur, with
the two particle displacements being eventually proportional to t, even in a
field without turbulent cascades. In addition, the initial behavior of a
statistic such as the r.m.s, two particle distance can be quite complex with
the dependence upon t to the first power (in contrast to Taylor's 1921
prediction of tl/2 dependence) occurring only after long enough times so
that the particles have separated by many wavelengths. The following figure
shows the mean square of x-separation for a set of particles in the channel*1( (- =3). The initial transient are large and lead to an initially slower
separation rate so that the quadratic nature of the mean square separation

does not become apparent for some time.

I
!
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Fig. 5. East-west spread of the initial line of particles in a channel wave.
Here ( = 3.

Isolated Disturbances

Consider the single disturbance

u = uo sech
2 kX

propagating with velocity c. The time for a particle to move from +Xoto
-X0 is Ij x

-X0 c - %Ao 5 tr-

In the stationary reference frame the particle moves a distance

A' - -2 Xo +a T(Xo)

The total distance the particle moves as the disturbance propagates from
- o* to + 40 Is the limit of 6to as Xo becomes infinite
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The exact value together with the Stokes' approximation, the progressive
vector estimate ( = E u) and an asymptotic estimate are shown in the fol-
lowing figure.

5

4

d3-

2-

0 STOKES

-I

-5 -4 -3 -2 0

Fig. 6. The displacement in a simple pulse u -sech 2 X for various
strengths. The exact results, Stokes' approximation, the
progressive vector estimate and an asymptotic estimate for
e' 0 are shown.

i.
iI
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Some limits are:

i) For C, 4 L 4k X X

ii)-as

jii) for - - width of pulse

For the case of the single disturbance (moving to the west at
qpeed e, the speeds experienced by particles on various stream lines are
shown in the following figure.

• ." -Z

.

9

Fig. 7. Reduction of a two-dimensional problem to a one-dimensional case.

Solid lines in upper halves represent contours of the instantaneous
streamfunction 1-1-; dashed contours of the streamfunction In the

moving frame 4 . The lower halves show plots of LA (the Eulerian

east-West velocity) as a function of X (the co-moving east-west

co-ordinate) along the labelled #, lines.

The displacements of a line of particles initially at X - o are shown in the
following figure.

- I ,a -
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Fig. 8. "Spaghetti" diagram of particles under the passage of an isolated
ring.

There is also a trapped region of particles travelling with the eddy.

-1 -stagnation point

trapped region Lagrangian center

- -Eulerian center

For an oceanic eddy (c.f. Olson, 1980), consider the radially symmetric
velocity field

i-c

°.-
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The net eastward displacement as a function of y is

Then in this case, the trapped area as a function of t is: (Note: the area is
normalized by the area within the circle of maximum Eulerian velocity).

80

60

a

400

2.0

%* Lohhudt Of L091og rion Center Y -I

0 2 4 6 8 1 12 14 16 la 20

E

Fig. 9. Trapped area a(& ) and also the latitude of the Lagrangian center.

There are two stagnation points in the flow (neither of which are the Eulerian center
for nonzero c) and as 1 - 1 (from above) these stagnation points approach each other.
For warm core rings, & ,,- 20 (at the surface) and the area a h and & decreases
with depth. Two possible vertical structures are possible: 1) the compensated case
where E o as the bottom is approached and 2) a first mode solution for which there
can be a second deep trapped volume (not connected to the upper volume). Both trapped
regions look like skewed wine glasses.
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•0 C

Fig. 10. Trapped regions for baroclinic eddies

The trapped volume for these two cases is

30-
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*4502251650 lit 90 75 64 56 50 45 4f 36 35 32 30 Swui speed

Pivoting case

Fig. 11. Trapped volume for Gulf Stream rings as a function of translation
speed (swirl speed - 90 cm/sec) or swirl speed (c cm/sec.).
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A more dynamical example is that of a vortex pair (modon).

Following similar arguments to those above, we can show that the net

displacement of a particle caused by the passage of the modon is prograde.

~*TL

J-- T

l b

The displacements are sketched in the second figure above. At first sight,
the prograde displacement seems puzzling since the streamfunction pattern
suggests that there is mainly retrograde flow north and south of the eddy.
However, we can show that particles initially in the two hatched areas are
moved to the right by the modon by considering the detailed form of the
solution. For constant f, V? 4 = 0 outside the eddy

% = C~ro - '- ,.

Inside 9 Z4 : - '

$- A TCk '-
at r ro match the two values of

and
q, -- (4- Z , /o/& ol
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TuCalculation of u - shows that u >, o In the cross-hatched areas.
Thus a particle even initially far north or south of the center of the track
feels u > 0 for substantial periods of time.

If the modon is on the j -plane, however,

and the outside field is now -rd,) sin 0  (KI modified Bessel
function) and u = o when

sin 2 D = )

Thus the regions for which u > o are now more limited and one would find
retrograde displacements for particles set to the north or south of the eddy.

In summary, there is a net drift of particles whenever TE = TL. For
oceanic or atmospheric flows with vorticity,TL can be larger or smaller than
TE and a general formula is UL = 1 - TE/-.
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TRACERS IN RINGS

Glenn Flierl

Introduction

The problem considered is the distribution of a tracer in the neighborhood
of strong, large scale vortices of the type found in the ocean and in
planetary atmospheres. The strongest examples of nearly geostrophically
balanced vortices in the ocean are rings which are eddy features formed from
meanders in western boundary current extensions such as the Gulf Stream or
Kuroshio. The intense cut-off highs and lows in the atmosphere are similar to
rings in some respects. The features of interest have length scales L 1 I00
km in the ocean and L -o- 1000 km in the atmosphere and have the distinguishing
property of remaining coherent for long periods of time (- 6 mos.-l year,
ocean; - week or more for the atmosphere). These eddies are of particular
relevance to the systems in which they are found, due to their role as both a
mixing mechanism and their ability to trap fluid within their cores for long
periods of time.

A laboratory example of a strong, nonlinear vortex can be generated by
releasing a column of light fluid into an otherwise quiescent denser fluid on
a rotating table (Saunders, 1973; Griffiths and Linden, 1981). The result
after the geostrophic adjustment phase is a large vortex of upper layer fluid,
restrained by Coriolis forces from spreading rapidly into the final state of a
thin layer of lighter fluid spread uniformly on the surface of the lower
layer. The transition to this final state could occur by frictional breaking
of the geostrophic constraint; but it actually takes place much more rapidly.
Due to an in3tability of the vortex (Griffiths and Linden, 1981) the vortex
edge breaks into sets of dipoles which carry fluid rapidly outward. This
transport, essentially similar to that described for the modons, accomplishes
the spin-up on a time scale much shorter than that due to interfacial friction.

Tracers in the Neighborhood of a Ring

The distribution of some tracer or concentration of a cloud of discrete
particles, S = S(x,y,t) released at some point )o, 1o at t - 0 is governed by
the advection-diffusion equation

I S+21ksV-SJ (1)

where is the streamfunction for the flow into which the tracer is released.
To describe the evolution of the distribution of S it is convenient to intro-
duce the moments of the distribution of S in space. Here the analysis will
include the first moment or center of mass

-- x X , . .. 2)-
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and the second central moments

In these definitions Mo is the total mass of tracer

Then as long as a finite set of moments exist (i.e., S(x,y,t) is bounded) the
time derivatives of the first moment are

A simple example in which the evolition of this center of mass of a tracer
can be followed is for a constant vorticity flow

)e + cl4' t e- x +f .
The time rate of change of the first moments for this flow field Is

Therefore the center of mass of an initial patch of tracer behaves just like
an advected particle in this flow. In general the situation is more
complicated such that it is not possible to express the movement of the center
of mass as a function of the streamfunction and first moments alone, i.e.

Another tractable problem involves the behavior of simpler initial
distributions of tracer. For example, the distribution of sharply peaked
patches of tracer can be described for short periods of time following their
release. If the initial distribution is given by a delta function

2(,J)D- Ml. S(K-y.) So- 3  ) 5

The short time evolution of S can be found for a general flow field, 5 '
For this case the temporal b'ehavior of the center of mass can be expanded in a
Taylor series to give

II I + (6)
z 4 J~ I
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The evolution of the second central moments which describe the spreading of
the patch of tracer can be expanded in a similar way using this result

1r1 )'j, o (7)

Then since the second moments of the tracer cloud are small for the period
immediately following release, the expression for the time derivative of the
center of mass can be approximated by

a !5'4 (8)

Now consider a vortex which exhibits trapped regions as described in the
first lecture. Let the streamfunction in the translating coordinate system be

.1 It ) it XX,).

where in s a modified Bessel function and c is the phase speed for the

eddy. Following Eq.(8) it is possible to write an effetive streamfunction
of the form

=6g - ;)(Lfr)Z+ . (10

The influence of the diffusion introduces an effective opening up of the
streamlines in the proximity of the uo - c saddle point as shown in sketch
below. Fluid will tend to enter the region which is trapped in the absence of
diffusion from the lower left quadrant in the figure. Diffusion also allows
tracer to leave the trapped region at the lower right edge of the vortex.

edy Flown q. ) tispsibetowie nefetie -remunto
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The problem of the dispersion of a tracer in an eddy can also be done
numerically. The conservation equation (Eq. 1) is solved in a coordinate
system which is translating with the eddy. Sketches of the results for two
cases are shown below. In the first case the tracer is originally introduced
within the "trapped" region of the eddy. The effect of the diffusion is
basically that predicted by the small time expansion above with a plume of
tracer proceeding out of the vortex at the lower right. In the alternate case
where the tracer is originally distributed outside of the closed streamlines
the simulations show tracer diffusing into the ring in the southern portion of
the vortex again in agreement with the prediction of Eq.(lO).

When the Pecl6t number is very large, the concentration of the tracer
becomes homogenized along streamlines (as in the Batchelor-Prandtl theorem)

S = So( ,t),
On the streamlines which expand to infinity S is determined by the far field
boundary conditions, in this case S = 0. However, the formalism of Young and
Rhines cannot be applied directly to this problem because of the stagnation
point existing in the flow. One might suspect that the exterior flow will

effectively maintain S - 0 at the boundary of the trapped region. A simple
analog problem then demonstrates that the tracer will decrease with a time
scale L2 jK but exponentially rather than algebraically. Consider a field
with 9= 0(r) for all areas with S # 0 and then two cases to demonstrate
the importance of conditions at the edge of the eddy. First consider

S

[T(h£rc) o]

00.
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corresponding to a situation where tracer is swept away to W by a flow
outside of a region of closed streamline bound at r = ro. The decay of the
concentration at the eddy center is exponential in time. Alternately taking
the same initial condition in the case with continuous radially symmetric flow
out to infinity so that S-* 0 far away, a solution to Eq. I is

which leads to a decrease in tracer at the eddy center

These two cases behave similarly for small t but there is a much faster long
time decay in the first situation where S = 0 at r = ro. The difference
rises from the nature of the outside 0 and S fields.

Influence of Rings on Large Scale Property Distributions

In order to study the influence of the passage of strong solitary eddies
on the distribution of properties in a region the passage of successive
vortices through a channel is considered. The model problem consists of a
channel geometry as shown below across which a gradient in S is imposed by
fixing S on the boundaries.

S=0-- j-,,,L ,---,, * 1s r- l e / I e -/ / / -/ z . / / e ' - -/ / = I

I I1
(D I

This might be thought of as an analog to the passage of warm core rings
through the North American slope water. In the actual situation the lower
boundary becomes the Gulf Stream and the upper the continental shelf.

The problem to be solved is again the advection-diffusion equation

where the scaling parameters are and The boundary
conditions imposed are

S- 0 at y 0
(12)

S - I at y 1
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The cross-channel flux per eddy cycle can be found by writing Eq. 11 in

flux form and integrating in x to give

From the boundary conditions it can be shown that Fy 0. As long as the flow

satisfies the boundary condition 01)= 0 at y = 0, 1, it is possible to

write a Nusselt number, Nu, for S as

f ( ) = (13)

Actual flux of S
Diffusive flux of S

If an integration is done over a region bound by some streamline,

and one of the walls, it is easily shown that

0

f V~1~( ) S s ~ ~ &lrja~ (14)

For the closed streamlines the Prandtl-Batchelor theorem holds (see Rhines
lectures) which follows from

which vanishes in the integral above only if 0 inside the region

bounded by A On open streamlines the tracer must obey

_ - (15)

From this result integrated from =o to 1 - and the original definition
of the Nusselt number we find

A j9 olV I °

0 (6

As an application the somewhat artificial case of square eddies is assumed.
While the eddy shape is clearly unphysical this makes the problem tractable.
Two cases are treated. One involves an eddy whose velocity maximum occurs at
the channel walls (y - 0, 1). The second case treats an eddy whose velocity

maxima occur wit.in the channel. The problem geometry (page 72) i'onr ,th the

resulting S fields (page 73) is shown in the following diagram.
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CA-59 A

I - - - _ _

In the situation where the eddy fills the channel the gradient in S outside
the eddy is uniform. A very rapid flux of tracer occurs at the walls where
the eddy is in contact for this case. In case II the gradients in tracer are
concentrated In boundary layers along the walls while the interior of the
channel is nearly uniform.

The Nusselt number for the flow field increases in both cases as the eddy
steepness, 45 , increases from small values. In the case where the eddy only
occupies a portion of the channel the Nusselt number becomes constant at some
value of Cz and above. This arises due to a diffusive limitation for the
flux in the boundary layers. In the situation where the eddy is ir contact
with the walls there is no such limitation and Nu increases with increased - •

The dependenceof Nu on the nonlinearity, ,is shown graphically for the
two cases below.

/VL4~)c 0 d'eZ

I / 0
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The increased efficiency of the tracer transfer across the channel is given by

Xeff - Nu( e )
for both cases. For realistic parameter values Nu - 4-6 so that very little
enhancement to the cross-stream flux actually occurs.

It is also possible to treat the down-channel flux associated with the
translation of eddies. Here the boundary condition imposed at the walls would
be S = S(x) in general. The simplest case is just

S - x on y = 0,1.
The dowin..channel flux in the absence of any eddies is then just - . The eddy
passages can be looked upon as discrete jumps of fluid with the Lagrangian
displacement profile discussed in the previous lecture. Schematically the
problem appears as follows.

"-I JI I =

UL7Z.

The problem to be solved then becomes

U )  ' ' ' S' "

Since the concentration minus x, S-x, is periodic a solution can be written

S 5= X+ S0(y).

The problem then rvduces to an equation for 9of the form

AA

with S - 0 at y - 0,1. A Nusselt number for the flow can be written as before
which gives

Nu = 1 + jCSy)2dy,

in which the last term is proportional to S.The effective diffusivity is
then

Keff I

in the down-channel direction. There is then an asymmetry in the effective
diffusivity due to the eddies in the two directions with

whRic give

Keff > Keff-
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I For small diffusivities the eddies produce a more efficient flux of material
in the dovuachannel direction than in the cross-channel.
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EQUILIBRIUM STATISTICAL MECHANICS APPLIED TO
GEOPHYSICAL FLUID DYNAMICS

Rick Salmon

I. PHILOSOPHY AND REVIEW OF THE BASICS

Introduc t ion.

This is an old subject (due mainly to Maxwell, Boltzmann, and Gibbs). The
new idea is that equilibrium statistical mechanics gives useful insights into
the behavior of realistic, non-equilibrium fluid motion. The pioneering
papers on the application of equilibrium statistical mechanics to classical
fluids are:

Burgers, Verhandl. Konikl. Akad. Wetenshap, Amsterdam (1929)
Onsager, Suppl. Nuovo Cemento 6, 279 (1949)
Hopf, J. Rational Mechanics 1, 87 (1952)
Lee, Q. Appl. Math., 10, 69 T1952).

These lectures will review the basics of statistical mechanics, emphasizing
the differences between the fluid continuum and the conventional molecular
gas. Our examples will be drawn from GFD.

Equations of Motion

Consider a system with N (real) degrees of freedom (yl, Y29 .... ,Yn)
whose evolution in time is governed by N first-order equations,

For example, a two-dimensional inviscid flow within a closed curve k. • The
stream function Y/ obeys the equation,

v t .T(#,v'-A): Y L- , (2)

Expand -/ > 4,A&) i. ( (3)

in che eigenfunctions,

'4-Jt

(Here the overbar denotes an areal average over the flow). The transform of
(2) is

- - A .,j y (4)

where

The N-dimensional space spanned by (Yl,...,yN) is called phase space. Each
state of the system corresponds to a point in phase space. The evolution of
the system is represented by a trajectory in phase space. Let P(y, t) be the
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density of systems in phase space. P('j, t) has two interpretations: (1) If
there is only one system, then P is its" probability density. (2) If there are
many identical systems evolving at once, then P is their number density in
phase space.

For either interpretation, P obeys

~- (5)

which is the analog of the continuity equation,

V (6)

for a fluid. Liouville's theorem states that if 0 , then
the phase flow is nondivergent and

L P (7)

This is the analogue of Dp/Dt=O for incompressible fluid motion. Equation (7)
is equivalent to the statement that in the coordinates Y1 , the elements of
phase fluid preserve their volume. Canonical coordinates automatically
satisfy the Liouville condition, but so too do many noncanonical coordinates.
The coordinates introduced above for the two-dimensional fluid are
noncanonical, but they satisfy (7) because Aij1 vanishes whenever two of its
indices are equal.

The evolution of turbulent fluid is highly sensitive to initial
conditions. Thus, an initially compact blob of phase fluid (representing a
tiny uncertainty in the initial state) evolves so that phase particles which
were initially close together become widely separated after finite time. The
phase blob "fills" an increasing volume of phase space, even though its own
volume is conserved (Fig. 1). This behavior is called "mixing". The phase
blob cannot, however, mix through all of phase space since it is constrained
by the conservation of energy (enstrophy, etc.) to energy hypersurfaces.

A

Let P be a smoothed or coarse-grained probability density which is
constant over the volume of phase space "filled" by P. P has a simpler form
than P, but can be used instead of P to compute averages

for any function R ) that depends smoothly on V. The essence of statistical
mechanics (whether equilibrium or nonequilibrium) is to get I without first
finding P. This obviously requires auxiliary principles or assumptions.

Equilibrium statistical mechanics assumes that P is uniform on the
intersection of hypersurfaces corresponding to a set of known invariants of
the motion. Examples:

A
3-d turbulence, energy conserved, P { (E-Eo)

2-d turbulence, energy and enstrophy conserved, P -C g(E-Eo) (j- A-o )1
1
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Where has the Liouville property been used? Observe:

1) Even if P is uniform in one set of phase coordinates, it will not
generally be uniform in another arbitrarily selected set.

2) Any two sets having the Liouville property have a constant Jacobian of
transformation.

3) The Liouville property guarantees consistency for the same set of
coordinates for all time.

Gibbs Viewpoint.

Gibbs was unconcerned with the evolution of a phase space blob and hence
did not distinguish between the space-filling exact distribution and its
smoothed counterpart. He noticed that if E was a constant of motion, so
that de/lt - 0 , then P - F(E) was a steady solution to Liouville's
equation. He introduced the

microcanonical ensemble P -C E(E-Eo)

and

macrocanonical ensemble P ( exp (-tk E) as important examples of F.

The connection between the two was clarified by Khinchin, who showed that the
probability density for a subset ( . of the N coordinates took the
form

- c , g(C-M)

as M/N ----> 0, where Em is the energy of the subset. The macrocanonical
ensemble is therefore appropriate for a system in contact with an infinite
reservoir.

Information Theory Viewpoint

This is an alternate, more flexible approach which emphasizes the guessing
nature of the whole subject. Now, P represents our state of knowledge about
the system, and the entropy S[f] measures the uncertainty in precise system
state. Example: A random variable has precisely N possible values. Let pi,
i-l,...N be the probability of each value. If

S should be minimal, but if

A.io 
1- -102.-
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S should be maximal.

There are many choices for the functional S [P] which have these properties
(e.g. S = - ). However, only the choice

also has the following desirable property: If A and B are independent random
variables, and AB is the composite random variable consisting of a realization
of A followed by a realization of B, then

(Let Pij = probability that A = ai and B = bj. By independence,
PuJ = Pi pj" Thus

- B . -' P,.P
J

For a random variable y taking continuous values, the entropy generalizes to

where M(y) is an undetermined measure. If y has the Liouville property, then
M(y) must be constant.

The basic strategy is to maximize S subject to constraints which represent
the state of knowledge about the system.

Example: Two-dimensional Turbulence

The previously defined yj(t) satisfy the Liouville condition. Maximize

s - 5f. S 1TdL Ny',,. , ) P(y. ,4)

subject to

known energy <2 / (8)

known enstrophy < 5- 2 y>
normalization < > p

Using the technique of Lagrange multipliers,

P C c p [-- o( (9)

where C, o ,le are determined from (8).

From (q) it follows that

S/ 2-

and, of course z

< 2)

nI • I u II I l l II I I I I l I II 1 1 1 . . .I i l. .
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and the quantity aL r : is equipartitioned among the modes in
equilibrium. The quantities -x and )' play the role of inverse
temperatures. Suppose that the wavenumbers ki are dense enough so that k
can be treated as a continuous variable. Then in two dimensions we have the
equilibrium wavenumber spectrum,

. () - / t ,~ . )(12)

Note that L (0 diverges logarithmically as k -3 " • The
divergence of the total enstrophy Z, j L(k)d is even worse. These
equilibria are therefore attainable only if the system is artifically
restricted to a finite number of modes, as if all k except J were
excluded from the dynamics.

For such a case, suppose that - as if all the energy
were initially dumped into wavenumbers near kI . The equilibrium E(k) is
determined by Eo, ko, kl, kc thrutgh (12). Let k2 =  ' • The
following behaviors are found:

--- 4--...-- k, far from ko, kc

S k-l
behavior kl - k

- -enstrophy equipartition

I "
/

k+l k l  ---- k

energy equipartition

To see how these states could anticipate nonequilibrium trends, imagin. that
kc is raised by finite increments, with the system allowed to equilibrate
between each adjustment. That is, let kc - *o with ko, Eo, Z0 (and
hence kl) fixed. Carrying out the algebra gives the results (Kraichnan
1975),

, /. : 7-

. ... ............. ... .. . . ... I rl
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Thus as kc -)-- nearly all of the enstrophy is found near kc, but signi-
ficant energy remains trapped at ko . This thought experiment anticipates
that enstrophy is transferred to ever-higher wavenumbers (and energy to lower)
by the nonlinear terms in the equations of motion. This qualitative behavior

could also be predicted by arguments which make no reference to inviscid
equilibrium ensembles. Interestingly, however, all of these arguments require

some form of statistical average. Without averaging, the time-reversibility
of inviscid rschanics provides a counter-example for every example.

I

p I,

time to time tj

Fig. 1. Mixing in a two-dimensional phase space.

_ _*A.. . ii nn .. . .. . .
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I. ROTATING FLOW OVER TOPOGRAPHY

In absolute equilibrium, only the total energy and enstrophy are known.
Suppose instead that at some time t, the energy spectrum is assumed to be
known. What is the entropy associated with this (imprecise) state of
knowledge? Now we maximize S subject to the many constraints,

• CC

(13)

finding that

F C ex .(14)

L

with

I . (15)

Substituting (14) into the expression for S, viz

- ', .5 T%%/ P~i~A'(16)

and performing the integration, we get

(17)

(to within additive and multiplicative constants.) Thus (17) is the entropy
associated with the energy spectrum 4E, ). The equilibrium spectrum can be
formed by maximizing (17) subject to total energy and enstrophy conservation.

Carnevale (1982) has studied numerical simulations of inviscid two-dimen-
sional turbulence on a 256 x 256 periodic grid. The experiments (figure- 2-5)
confirm that the entropy (17) increases monotonically as the equilibrium
spectrum is approached. A well-known group of turbulence closure models
provides closed evolution equations for the single-time spectrum {E. ).
Interestingly, and I would say necessarily, these closure equations are
consistent with the "H-theorem",

where S is given by (17) (Carnevale et al, 1981).

Why are energy and enstrophy so important when inviscid two-dimensonal
flow actually conserves an infinite number of integral invariants (V2*)n,
where n is any number? One answer is that only the enstrophy (n-2) survives
the truncation in modes. A more satisfactory answer is that the contours of
the higher (n> 2) invariants are "space-filling" on the energy-enstrophy
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Fig. 2. Randomly generated initial spectrum to test the approach

to equilibrium of inviscid numerical simulations of

two-dimensional turbulence.
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Fig. 3. Energy spectrum after t - .1 turn-overs. The theoretical

equilibrium spectrum is dashed.
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Fig. 4. Energy spectrum at t - 1.5.

APPROACH TO EQUILIBRIUM
-2.5

-2.7

-3.1

-33
0 0.05 OJO 0.15 0.20

TIME

Fig. 5. Entropy evolution in the experiment shown in Figures 2-5.
(Courtesy of G. Carnevale.)
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hypersurface. Kells and Oruzag (1978) have studied the inviscid evolution of
low-order systems, in which the existence of these extra invariants (and
perhaps others) is most likely to cause nonergodic behavior. They find that
the macro-canonical ensemble is correct for as few as N- 20 modes.

Now consider the more geophysically relevant case of one-layer quasi-geo-
strophic flow over topography. Let H be the fluid depth, L the horizontal
length scale, and Ro the Rossby number. If either

then the fluid motion is hydrostatic and columnar, and potential vorticity is
conserved:

£) (§J)Lf (18)

Here, f" is the relative vorticity and the Coriolis parameter. If,
moreover,

OH < 
H

then (18) is well approximated by the quasi-geostrophic equation,

~+ &~c)= ,V 2~,~) $ d ~ u , (19)

where 1 is the streamfunction and q the potential vorticity. Expand Y
and h in the previously defined eigenfunctions ( (x),

The invariants are

energy E-2.

and

potential enstrophy _Z ~ 2Z. .k .y
(less a constant)

By the same methods as before, we find that

< (20)

,.+~ 2V l41 4
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where O and dare the Lagrange multipliers corresponding to energy and
potential enstrophy. The mean streamfunction is an energy-weighted version of
the topography. In typical cases J2>O, and we have anticyclonic flow over
seamounts. The topography offers the fluid a way to sneak more energy into
high wavenumbers: Positive correlation between Y, and h preserves Z despite
the increase in 2:. . States with 31<C correspond to initial energy
sharply concentrated near kc . For these more artificial states, the spread
of energy into other wavenumbers forces a negative correlation between 'P and
h to conserve L.

Holloway (1976) compared numerical solutions to the equations of motion
for the following 3 interesting cases:

(M) no topography 47 + J ( WY ) - 0.
energy and enstrophy conserved
no mean flow

(ii) topography and nonlinearity
energy and potential enstrophy conserved
mean flow locked to the topography
topographic enhancement of the wavenumber spectrum

(Mi) no nonlinearr+-Y
energy and A conserved
no mean flow (if 'Z is initially zero)
energy equipartition in equilibrium

The results are show in figure 6.

If the topography has coherent form (as if d-o so that h-f), then the
transforms of (20) are useful. These are

t > (21)

and
/ I,

00v( <) <Y'()V(j Y= k-- (22)

where (' /(

To obtain the latter, remember that

An interesting special case is beta-plane flow in a rectangular ocean.
The mean flow equation,
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Fig. 6. Enstrophy spectra of two-dimensional turbulence over topography
after 2.5 turn-overs beginning from a narrow spectral peak. The
three experiments correspond to no topography (long dashes),
topography and nonlinearity of equal strength (solid), and no
nonlinearity (short dashes). The topography spectrum is hatched.
(Courtesy of G. Holloway.)
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< .( = <. - (23)

is the same equation considered by Fofonoff (1954). The constant Yo can be
considered the Lagrange multiplier corresponding to a third possible integral
invariant, the mean potential vorticity. If the energy constraint is dropped
(,K- o), then the mean potential vorticity is uniform, but the equilibrium
energy is unrealistically large (Rossby number order one). For realistically
small initial energy, L / ( /x)''is much smaller than the oceanbasin size,
and inertial boundary layers of thickness 2 close a uniform westward
interior flow. These results suggest that energy conservation is a strong
constraint on the spatial mixing of potential vorticity.

It is important to realize that the eigenfunction expansions are purely a
device for avoiding functional methods. Our development has followed the
solid arrows in the diagram below, but the dashed arrow is a possible
alternate path.

Fourier Space Physical Space7(T. D. Le;) (E. Hopf)

Fourier space Fourier Physical space
phase coordinates ( transform phase coordinates

Statistical Equilibrium Inverse x Statistical
in terms of Fourier components transform / Equilibrium in terms

of physical variables

To follow the dashed arrow for the case of two-dimensional turbulence, let
the phase coordinates be the values of Y at horizontal grid-points with
spacing e- . Replace the equations of motion with finite-difference
approximations which become exact as A -- 0 . Verify the Liouville
property for the phase coordinates, construct the canonical ensemble, and
write the equations for the mean and covariance. As &-* 0 , these equations
become identical to (21) and (22). The details are straightforward.
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I1. STRATIFIED FLOW AND THE EQUATORIAL FUNNELING EFFECT

Now consider the rotating flow of two immiscible layers of different
constant densities between rigid horizontal planes. The quasi-geostrophic
equations for potential vorticity conservation take the forms,

-,- Y C -) = o(i-i top layer

(i-2 bottom layer

where

2- 2 + F(-- )

For convenience, the average depth of either layer is assumed to be H. g/ is
the reduced gravity and kg-'the internal deformation radius. The quadratic
integral invariants of the motion are:

total energy - . .- _

consisting of the kinetic energy in the top and bottom layers, and the
available potential energy associated with displacements of the interface
between layers; and

potential enstrophies 7 '

It is convenient to adopt the modal variables,

barotropic -L ( 4-. +4k)

baroclinic -L ( t- ,,"

Expand ' and V in spatial Fourier series. The phase coordinates are the
real and imaginary parts of and .U . Define,

kJIj k2-+ t (barotropic energy in k)

Ei('~) (k~~)~t.. L (total baroclinic energy).

lit
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The invariants can now 
be written,

Suppose (for simplicity) that the layers are statistically symmetric such
that <1 *, K,& -= < I initially, and thus for all time. It
follows that Real ( *k-Z ) 0 so that 7 - 0. Then the only
equilibrium constraints ae F and BI- . conserved. The modes enter the
expressions for energy and sum-enstrophy precisely as in two-dimensional
turbulence, except that the baroclinic mode has effective squared wavenumber
(k2 + kA ). The inviscid equilibrium states thus turn out to be

and N

In all cases of interest (initial energy not concentrated too near the upper
cutoff kc) U (k) decreases with increasing k for all k. Then E(k)<< U(k)
for all k <kt and the equilibrium flow is nearly barotropic on scales
larger than the deformation radius. This is the "end state" of baroclinic
instability. Figure 7 shows the correlation coefficient between the layers in
an inviscid numerical simulation of two-layer flow. The layers were initially
uncorrelated. After 500 days the measured coorelation coefficient (solid)
closely resembles that predicted by the theory (dashed).

The generallzation to an N-layer fluid is straightforward. The energy and
sum-enstrophy take the forms

E cc. t-.

and

~~AV& - ~ C{ I /k)~ k)~) t ( c Ik

where L(k) is the energy in horizontal wavenumber k and vertical mode n,
and is the n-th internal deformation radius. Note k1 - kR. In
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uniformly stratified flow, ?. =  F 7 9'1 k

.75

uj .5-

_ .25

0 I IA I i'
C 0 20V 40
0

WAVEN UMBER
-.25

Fig. 7. The correlation coefficient between layers in an
inviscid simulation of two layer flow.

where is the Vaisala frequency and H the total depth. We expect net energy

transfer into modes (k, n) with lower total wavenumbers k
2 + t But

kn increases with n. This may explain why nonequatorial geostrophic motions
show little energy in high vertical modes.

Now consider what happens as kn varies with latitude through its depen-

dence on f. As the equator is approached, the kn vanish, removing the
inhibition against high vertical mode numbers. Moreover, since the total wave-
number k2 + In -  of each mode (k, n) is smaller than its value at higher

latitudes, the total energy should increase toward the equator. Thus a uni-
formly excited ocean would transfer energy equatorward and into high vertical

mode. Observations seem to support this idea (Luyten and Swallow, 1976).

11
11
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To calculate the inviscid equilibrium states with variable coriolis
parameter f(y) and Vaisala frequency E(), we adopt the quasi-geostrophic
dynamics,

,'c -f X-(Q¢ 6 ) : c

e L4. (24)

with boundary conditions )9-/') O t i-2 •

The invariants of the motion are the total energy,

E z- YE -1 /dj~ I~T
and the potential enstrophy at every level,

.-- (a ) JJ,¢c;] (1f Ail -

In equilibrium,

P C, kP L~w~~~~~ (25)

and integrations of (25) yield the analogs of (21)and (22), viz

. (26)

and

~~ X ( ~ 3H (27)

where

Equation (27) suggests that the fluctuations will be strongest where the
vertical diffusion coefficient" I'/-)L' is the smallest.

Now specialize to an equatorial channel -L(, .+tL with periodic end
conditions on x, f = 0.3y and "l = constant. It can be shown that, on
account of the channel geometry,

- J '-(28)

If the integral in (28) is initially zero, then the enstrophy invariant can be
reduced to

_. ( -4'' ) . (29)
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and there is no equilibrium mean flow. Suppose also that eel) has no
dependence. These conditions are met if the initial flow is uncorrelated with
latitude and if the initial energy density is invariant with depth. The
resulting equilibrium displays the "equatorial funnelinp effect" in its

l simplest form.

Expand the streamfunction * into vertical modes.

XI Y, X, V~ )Cas (STr& /H') (30)
=0

By the foregoing assumptions,

I~~X <. Q X,, g - (31)

I and (27) implies that I

where ^ •

I4

and

r is the s-th internal deformation radius. For !>-0 (the barotropic mode),
k o =0 and -'v ( vv ) ) f, -il
is the same as for two-dimensional turbulence. The equilibrium spectrum for

the barotropic mode thus takes the form

I which is a maximum at k- (o(.b")' O&/L). We therefore anticipate

that

I
I i.e., that the internal deformation radii are smaller than the basin size.

Then for S 'O (32) is well approximated by
A A\e RS 2V X (-~ (33)

I

I

-... '-A j

Eqato (33 ha II siia i soion of th form ll i I" l...
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whe re 2 2

(35)

does not involve s. We can therefore deduce the following two important facts
without explicitly solving (33).

(1) The latitudinal width of the equatorial energy peak of the s-th vertical
mode'Is (y L_ )'/" - the equatorial deformation radius for mode s.

(2) The average kinetic energy in mode s, at the equator is

By (34) this is independent 3f s. Thus all vertical modes have the same
equilibrium kinetic energy at the equator.

We can make further deductions about the solutions of (33) by WKB
reasoning. For > )'' can be replaced by

Then (33) is identical to the equation of internal modes with constant f. The
equilibrium spectra are

~(36)

Decompose the potential enstrophy invariant (29):

into contributions S (J from mode s and latitude y. Then since

it follows from (36) that -J, () is independent of both s and y in
equilibrium. The enstrophy invariant is thus equipartitioned among the
vertical modes and latitudes.

Figures 8-10 show results from a direct numerical simulation with a
6-layer quasi-geostrophic model in the equatorial channel. The initial
conditions are random, with kinetic energy equally divided between the
barotropic and first baroclinic modes. All higher modes have infinitesimal
initial energy. There is no forcing or viscosity. The internal modes
quickly develop equatorial energy peaks of the expected widths (figures 8,9)
and the quantity -.I tends toward uniformity in s and y (figure 10).
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Remarks:

(1) Linear equatorial waves couple the different latitudes and can

participate in equilibration. However, waves cannot explain the
equipartition between vertical modes, because the latter are decoupled by
linearization.

(2) The present theory predicts a spontaneous concentration of energy on

tihe equator. Once there, the energy can be 'wave-like', i.e. it can be
concentrated near the linear dispersion curves, but this in no way
invalidates the explanations offered here.

(3) Quasi-geostrophic dynamics are invalid near the equator, so my

results must be regarded as tentative. However, the solutions for large y
should be correct, and they have interesting consequences.
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WAVE-MEAN FLOW INTERACTIONS - WITH APPLICATIONS TO THE MIDDLE ATMOSPHERE

David Andrews

I. INTRODUCTION

This subject treats both the influence of the mean flow on wave propaga-
tion, and the nonlinear effects by which waves alter the mean flow. Clear
examples of these processes occur in the stratosphere and mesosphere.

The first problem is how to define the mean flow and the waves. Meteor-
ologists typically employ a zonal Eulerian average for the mean, but a
Lagrangian average may be more appropriate for many problems. In any case,
the disturbance or wave is defined as the departure from the mean.

In idealized examples, the waves are of small amplitude. One obtains the
linear wave solutions, correct to first order in the amplitude, then examines
the second order effects of the waves on the mean flow.

Three different situations will be considered: the interaction of two-
dimensional internal gravity waves with a mean flow, U(z); the propagation of
Rossby waves in a quasi-geostrophic system with application to stratospheric
sudden warmings; and the transport of tracers in the stratosphere. The latter
two examples will be treated with the transformed Eulerian-mean equations.
This system is similar to the equations of the Lagrangian mean, but is easier
to apply to meteorological situations.

Two kinds of theorems are relevant to the solutions of these problems.
"Non-acceleration" or "non-interaction" theorems state that small amplitude
waves alter the mean flow only in the presence of wave transience, wave
forcing or wave dissipation.

Generalized Eliassen-Palm theorems (Eliassen and Palm, 1961) are conserva-
tion laws of the form

where A is a wave activity, F is a flux (the Eliassen-Palm flux) and D repre-
sents forcing or dissipation. A, F, and D are averaged quantities, second
order in the wave amplitude, which describe the propagation of waves through
mean flows. They are useful diagnostics for such phenomena as stratospheric
warmings. The wave activity is conservative, if D = 0, unlike wave energy
which need not be conserved.

The transformed Eulerian mean formulation may be applied to the transport
of tracers. In two-dimensional models of the middle atmosphere it is
necessary to parameterize the effects of waves.

All these topics are included in the theory of the generalized Lagrangian
mean. A Lagrangian mean is a time average following a particle. In the
generalized theory this concept is extended to zonal averages. At least
formally the theory is valid for finite amplitude disturbances, but in

I
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practice it can be difficult or impossible to apply. The practical difficul-
ties arise from the fact that definitions of particle displacements about
their mean positions are required. The theory does, however, simplify the
proofs of the non-acceleration and Eliassen-Palm theorems.

II. SECOND ORDER MEAN FLOW INDUCED BY INTERNAL GRAVITY WAVES

The equations of motion for a two-dimensional, inviscid, adiabatic,
Boussinesq fluid in the x-z plane are

.,-N~w" E) ,. = 0

where 9 is the perturbation buoyancy, and N2 , the Brunt-Viisali frequency
squared, is a specified function of z.

We consider an initial value problem in which the fluid is at rest for
t 4 0. At t-O a moving corrugated lower boundary is turned on, with the
height of the lower boundary given by

z - h(x,t) = O(a)
where a is assumed to be small. The corrugated boundary moves in the positive
x direction at a constant speed, c.

We expect that internal waves will propagate away from the boundary,
filling the region up to a height

z M Cgt

where cg is the vertical group velocity. Above z the fluid will be undis-
turbed. Z=C

We will use a WKB, multiple scale approach to obtain the first order
linearized wave solution, and then show how this wave solution affects the
mean flow at second order.

The full boundary conditions are,

atzi-h w + 41 h

and as z --Woo the disturbance --V, 0 for finite t. The domain is assumed to
be either infinite or periodic in x, and the averaging operation (-) "
is an average over a wavelength. Also, we chose h = 0.
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jThe Linearized Problem

Expand each variable into its mean and disturbance contributions, i.e.

u - + u' u' - (a)
j; o(a 2 )

Then the linearized equations are

6 +/1 '  0 + D z(i

0 + r C)(1)

And the linearized boundary conditions are

P' -0 as z--), o for finite t
(2)

w' w ht at z = 0

In order to avoid generating transients, the boundary forcing is turned on
slowly. A sinusoidal variation is chosen for the boundary. Thus

h' - aG(T)eik (x.ct) + O(a ) (3)

where T is a "slow" timescale
T =4t

with/tA< 1. So G(T) is a slow modulation of the boundary forcing. The
O(a,4) corrections are small and will not be needed explicitly.

G(T) is chosen to behave as shown. To is the value of T at which G(T)
reaches 1, where

0 O N >-> - A t. . -k,

Thus the operator ? . T~~L~

To leading order in / the lower boundary condition is

i ;k(y-ct)

1ow we take N to be constant and look for solutions of the form

1kA

I
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where m is the vertical wavenumber and the hat variables are functions of T
and Z, where Z is a 'slow" height.

Z z
i.e., A A

u = u(T,Z) + O(a.)

At first order in the wave amplitude we obtain

A ;NLk C C % A Z .; 7 A ( 5 )

with the dispersion relation

and the vertical group velocity is given by

The wave energy density, E, can be used to show that m < 0. A wave
energy equation can be derived from the linearized equations of motion (1),

+E 'a

-ib x (f 'a') - 0 (8)

where the wave energy, E, is given by

In a shear flow there would be additional terms on the r.h.s. of equation
(8). Using equation (5) the wave energy density may be expressed in terms of ,

AJ IV1 0 %.
S -- , lAlI (lOa)

and the wave energy flux

-
W.-i1 (10b)

_ t ' W "
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The wave momentum flux is

A) 'I

and the wave buoyancy flux is

8, Lr' -=- 0 (/t e. )

Substituting (10) into (8), and using (7) we obtain

-a r t Za v '. 0

Since is constant, and E is a function of the slow variables only (to

0(a2))

_+ 0 (
(12)

This has solutions

_ (13)

Using the lower boundary condition (4), and equation (1Oa) we have

where the group velocity, cg, is now by definition

cg -

Note that the solution (14) automatically satisfies the condition at z -4o,

provided we choose m < 0 so that cg 7 0. The vertical distribution of
wave energy described by (14) is simply G(T)2 turned on its side

CST.

Now consider the induced O(a2 ) Eulerian mean flow.
The boundary condition to O(a

2 ) is

using the Taylor expansion w(h) - w(O) + hwz(O) +..,Rec11 that to 0(a) the

boundary condition was evaluated at z - 0. But u x kL - hu
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implies that -h(u' + wz ) - 0 by continuity.

This is not generally the case, however. For example, in a rotating fluid
one needs to allow for a third spatial dimension, in which case the boundary
condition becomes

But z = 0 will lie above the physical boundary in the troughs, and if there
were a tendency for the disturbance velocity to be one way along troughs and
another along ridges in the boundary, then 'CF#O ; this would be associated
with a vertical mass flux into or out of the trough region. However, the
Lagrangian-mean W- at z = 0, so in this sense the Lagrangian-mean descrip-

tion is simpler than the Eulerian-mean one.

The horizontal momentum equation

(&5a)

at = 0 O(Ot') (15a)

Similarly, the thermal and vertical momentum equations respectively lead to

Z (15b)

ctz, r)
Equation (7), together with (11) imply that CA V, so one
looks for solutions of the form u - (Z,T), etc. Then (15a) implies
uT cq ~ , which with (12) yields . This equation can be inte-
grated from an initial condition of rest to

(j(16) es

which represents the mean acceleration t4^ Vt
due to the waves. As the wave front pro-

gresses, the fluid accelerates in the
frontal reion.
Note that 0 ) in this problem,
so that net heating is a higher-order effect.

One can check that the force exerted on the fluid by the boundary balances the
net acceleration:

7-
Ot LSZ (17)
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Possible generalizations are the introduction of a non-zero 0(1) background
flow U(Z), and N2 - N2 (Z). Then wave energy is no longer conserved, but

wave-action A is conserved:

A -+- t,_-__u __) (18)

k L-ULZ) 'j kU&7)

satisfies the relation
=j~ 0 A(cOA

I !! where W. is the intrinsic frequency (Bretherton and Garrett, 1968).O(Au)
dissipation can also be easily introduced into this formalism.

Generalized Eliassen-Palm Theorem for Two Dimensional Internal Gravity Waves

Let us now consider the basic shear flow 5, which is an 0(l) quantity, and
* N2 to be functions of height so that

ii = (t(z),o).

We will also allow dissipation and forcing to be present. Then the linearized

equations for this flow are, if +e .j

-+ )" (20)

otw' 4 9- - (21)

S- Qz (22)

4 . Z 0 (23)

where primed quantities are deviations from the zonal averages, X' includes
viscosity or externally imposed wave forcing, Z' is a vertical forcing term

and Q' is a thermal forcing term. Note that Z' should not be confused with
the slowly varying height defined in the previous section. At this point we

should also define the y-component of vorticity to be

' - - W x .

The disturbance vorticity equation can now be ,btained by partially

differentiating (20) with respect to z and (21) wIth respect to x and1subtracting to give
!~0 'I ,. + , , ~ (2 4)

and if we let .# be the vertical particle displacement then

a / D~'# Oaa ~(25)ii
V.: O ' 0(- n
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' being zero. We will also define q' to be the time integral of Q'
following the mean flow U, that is,

Q-tq', (26)

Rewriting (22) using (25) and (26) we obtain the equation

Dt( t4 N2 f -q') = O(a2 )

If the initial conditions of our problem specify that the system is at rest at
t = 0 then the equation above may be integrated to give

/ - N' - 7 / - 0' (27)

This equation relates particle displacement to buoyancy in the obvious way,
that is, a rise in the particle position leads to a decrease in the buoyancy.

If (25) and (27) are incorporated into (24) the disturbance vorticity
equation becomes

W'r '& )- N r' -- XZ* - ' -', - ,(28)

where A is the dissipation. Now multiplying (28) by ' and taking the
zonal average of the resulting equation, noting that

we obtain

However,

the last two terms of which are zero from the continuity equation (23) and
because

so that (28t) may be written as

~(~r +--(4VZ)T -W~ ~ O~~) (29)

Note that

Equation (29) is of the form of a conservation law

'aA _ 9 - Dissipation/forcing + 0(a4 ). (29a)

_
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This is known as the Generalized Eliassen-Palm theorem for two dimensional

internal gravity waves. It is more general than the work of the previous

section because it has not employed the two scaling assumptions used there;

only O(a) assumptions have been made. It is a generalization of the Eliassen-

Palm theorem (Eliassen and Palm, 1961), which considers a linear conservation

system with steady waves giving the result

(('-' ) -o.

The question we wish to consider, having found the above result, is how do
the small amplitude waves influence the mean flow? To examine this problem we

will consider the mean momentum equation

i,-t ;wU Z.= -( / v)4 I

If we assume that the boundary conditions imply that 0 = then (29) may be
used to give

i)(j 4 ), (30)

where

This equation relates the mean acceleration of the flow to wave transients and
dissipation, and forcing terms (plus nonlinear terms in 0(a4)). Thus the

Generalized Eliassen-Palm Theorem (GEP) gives us an insight into what
influences the mean flow. Note also the corollary to (30) for steady

conditions in which the whole flow, that is, the linear waves and the mean
flow, is conservative, namely

Ut = 0.

This is a nonacceleration theorem which is known as the 'Charney-Drazin'
theorem (Charney and Drazin, 1961).

The GEP theorem also gives useful information about 'wave action', namely,
that for slowly varying waves the theorem reduces to the conservation equation
for wave action

L '- ) = dissipation/forcing, (31)
Ai 4( - kr. j -

where Cg is the group velocity of the waves of wavenumber k and 'wave
action' is the quantity E/(& -ku), which is the ratio of the wave energy to
its relative frequency. This equation, in the terminology of (29a), suggests
that B/A may be regarded as a generalization of group velocity.

III. QUASI-GEOSTROPHIC FLOW ON A fl-PLANE

In this section we will derive the GEP theorem for quasi-geostrophic

disturbances on a 4 -plane and examine the implications for the O(a 2 ) mean
flow effects of these waves. In doing this the transformed Eulerian mean
equations (TEM) will be derived and discussed.

We will consider our height coordinate in logarithmic pressure terms, that

is, define

1 I
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where is a standard reference pressure, often taken to be 1000 mb, and H
is a standard scale height (H - RT9/g, R being the gas constant and To a
horizontal average temperature) which is approximately 7 km for the strato-

sphere.

Let our flow be conservative, then the equations of motion are

( v)}=o(1)

V.. o (2)

_L4. 6 . " 0) t h> o). (3)

where q is the potential vorticity defined by

and
P<(=', = ) -z/

being a standard density and ) R/Cp, the value of which is
approximately 2/7 , C being the specific heat of air at constant pressure.
For more details see olton (1979, sect. 11.3).

Now

being the potential temperature, so

and from (4)

'Z r" 4 pl Y ~(~~ (5)

This form for the potential vorticity is sometimes more convenient than that
expressed in (4).

If we let all our variables be represented as the sum of a zonal mean plus

a disturbance, as in the previous section, then

(6)

<t,' E',, +t', (7)
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I The northward eddy flux of potential vorticity is then (Bretherton, 1966)

which can be rewritten as

To obtain the GEP theorem we will use the linearized potential vorticity
equation

O V ,", "-O(9)

where

and, from (6),

,. /3 -49,Z -Z(ctzz'.,_
We also define the northward particle displacement 1/ , to O(a), by

r)t ,1 7 V "/, (10)

Combining (9) and (10) gives the equation

which, if the initial conditions specify that the fluid is at rest at t =o,
implies that

The lefthand side of equation (8) may now be rewritten, using (10) and (11), as

so that (8) becomes

~ L. ~ 4L~e4'~.~') O~r'4.(12)

This is the GEP theorem for conservative quasl-geostrophic disturbances. The

quantity

is sometimes called the "density of wave activity" and may be written, using
(11), as

A= (1
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The quantity analogous to B in equation (29a) of the last section is

L (14)

which is known as the Eliassen-Palm flux vector.

There are several corollaries to (12):

i) For steady conservative linear waves (12) reduces to

V. F-O(14a)

also VJ ,i .r is identically zero everywhere. This result (14a) was
proved by Eliassen and Palm (1961).

ii) As the velocities are geostrophic, F only involves geostrophic
quantities and should be a useful diagnostic. However, as A involves 1)/

F may not be as useful as it appears when the conservation equation (12)
is considered.

iii) When dissipation is included, (12) takes the form

4 t + V. r - O.
iv) Consider the wave action equation 11.31 for slowly varying waves and
mean flow found in the previous section. A comparison of this equation
with (12) suggests that F/A may be regarded as a generalization of the
group velocity C9 of the waves to cases where the waves are not slowly
varying.

If we now turn to consideration of the O(a2 ) mean flow effect of the
waves, first note the appropriate O(a2 ) mean flow equations

(15)

Q- J. " - -- y (16)

where t'kr., Vc) is the mean ageostrophic wind and - is the mean thermal
forcing, with the continuity equation

4 c' (17)

and the thermal wind equation

'~ ~ 0 >O (18)

where

-/)
14
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Defining the "residual mean meridional circulation" ( 7 by

V 1 -q,(,, (giJ :W , ) (; 0 " i ')- (19)

we can derive, from (15)-(17), the transformed Eulerian mean eq. (TEM):

& -- - "v , - %- (20)

2 W. " - (21)

The TEM equations also include (18).

If the TEM equations are combined then an equation for o in terms of

V. F and Q can be found, namely,

S-. - . . ( 2 3 )

Thus given boundary conditions for li, a knowledge of .F in the eddy forcing
term and Q in the mean diabatic forcing term, equation (23) may be solved for
M. Another point to note about (23) is the nonlocal response of Ut to V. F.

If we are interested in ( 1 , ) as well, then by defining

") (24)

the TEM equations give

so that ( *, i) may be determined through (24) ( cf. Eliassen, 1951). Note
that one has to be careful about the boundary condition for (25) (Andrews,
1980).

IV. SUDDEN STRATOSPHERIC WARMING

Sudden warmings of the polar stratosphere during winter are perhaps the
most spectacular large scale events to occur in this region of the atmos-
phere. In this section we will apply the theory of the previous lecture to
this phenomenon.

These sudden warmings occur about every other year in the winter northern
hemisphere stratosphere. They are characterized by the basically westerly
polar flow weakening and changing direction and the northward negative
temperature gradient reversing so that the pole warms. This sequence of

"Ai
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events occurs very rapidly in January or February with temperature changes of
the order of 400K in five days. The sequence of events can be observed
from satellite data (Palmer, 1981a,b); a view of the zonal average wind field
for the 1979 warming is shown in Figure 1. It can be seen from the series how
dramatically the warming occurs.

Sudden warmings were first observed in 1952 and the currently accepted
theory originated with Matsuno (1971) who suggested that planetary Rossby
waves of wavenumber m = 1 or 2 propagate from the troposphere into the
stratosphere and by nonlinear rectification of these waves the mean flow could
be altered. Matsuno invoked transients of the waves to produce the
deceleration of the polar jet and used simple analytical and numerical
models. An alternative interpretation is that the rapid heating can be
ascribed to the descent of air parcels.

A number of numerical models have appeared since Matsuio's work as well as
diagnostic studies. Recent discussions, however, have made extensive use of
the TEM equations and the EP flux F. These include Dunkerton et al. (1981)
who used Holton's model and Palmer (1981a) who studied satellite data.

Palmer used the "EP" diagnostics F and 7. F in spherical coordinates.
In these coordinates the mean momentum equation is

-1 (1)

where f is the latitude and a is the radius of the earth. In terms of
angular momentum this equation may be written as

As in the /2 -plane case 7. F is zero unless there is wave transcience or
the fluid is nonconservative or nonlinear. Recall also that F/A measures wave
propagation as it is analogous to C

9
To demonstrate the uses of V F we will consider an idealized situation

and then examine Palmer's analysis of the 1979 warming. First, in Figure 2
typical contours of 7.F are drawn in an "EP cross-section". On this diagram
integral curves of F are also shown - these can be thought of as rays along
which waves propagate, even without slow variation, provided A is positive.
The prominent equatorward tilt of these rays is expected from the theory of
Rossby waves as wave packets are expected to follow great circle paths. For
more details about these diagrams see Edmon et al (1980).

In Figure 3, taken from Palmer (1981a), we see the "EP cross-sections" for
the sudden warming of February 1979. On the 17th of February precursor rays
from an m - 1 wave are seen coming down from the mesosphere while lower down
the field is not unusual. However, by the 19th some of the tropospherically
generated waves are tilted toward the pole while a strong convergence zone is
developing near the 10 mb level which is possibly causing the deceleration
observed in Figure 1. After some rapid changes in the polar convergence
picture the "EP cross-section" settles to a strong divergent pattern at 80ON
near the 10 mb level with m - 1 waves propagating out of the polar region.
For more details of the intricacies of this figure see Palmer (1981a).

i
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Fig. 1. Meridional cross section of zonal mean wind velocity (mns
Regions of easterly winds are stippled: (a) 17 February,

(b) 19 February, (c) 20 February, (d) 21 February,
(e) 23 February, and (f) 27 February. The values of the

pressure coordinates used in this and the following figures

are related to the scale-height coordinates used in the text

by the following: 100 mb-14.7 kin; 40 mb-20.5 kin; 10 mb-29.4 kin;

4 mb-35.2 kmn; 1 mb-44.l km.
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4s S
W.I

Fig. 2. The continuous curves are contours of V.F and the broken lines
are curves of E (which are everywhere paraTllel to the total value of

F). This is an idealized view.
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Fig. 3. Contours of e--q F labeled in units of 10- ms
with some integral curves of F. Negative values
of iIF are stippled in the figures. (a) 17 February
(dashed curves are dominated by wavenumber-1 flux.
Full curves are dominated by wavenumber-2 flux),
(b) 19 February, (c) 21 February, (d) 23 February,
(e) 26 February, and (f) 28 February. For Asee

Palmer (1981a)).
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Another diagnostic that Palmer uses is found in the terms of (1). In

Figure 4 the values of these quantities are plotted for three pressure levels,

the fv* term being determined as a residual and the term averaged between

600 and 80°N with cosine of latitude weighting. On the 1 mb plot a strong
correlation between 7.F and Ut is seen and the various decelerations

observed in Figure 1 are clearly indicated. At lower levels these features
are not so obvious and at the 100 mb level, just above the tropopause, there

is virtually no correlation.I
17 Feb 19 21 23 25 27 1 Mo, 3

~(a) I mb

-5

(b) |0 mb

(c) 100 mb

-S

0e

___ 0 --- f --" ---- VF
...... p..,o,

Fig. 4. omentum budget averaged with cosine of latitude weighting between 60

and 80ON for the period 17 February to 3 March: (a) 1 mb, (b) 10 mb

1 and (c) 100 mb.

1
!
I
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In the model of Dunkerton et al. (1981) similar diagrams were produced.

They also calculated the residual circulation r which on day 22 of their
model looked qualitatively as sketched in Figure 5. Notice the large negative

w"  near the pole (cf. (24) of the last section) which implies a warming in the

polar stratosphere as

L0

10ol

Fig. 5. Plot of X" modelled on Dunkerton et al. (1981, fig. 7).
Cross-hatched region is where V.F < 0. Note the cooling in the
mesosphere.

The Eulerian equationras opposed to the TEM equations of motion need to

include eddy effects to obtain this result as the Eulerian vertical velocity
may be opposite in sign to V' This was demonstrated by Mahlman (1969) who

found the Eulerian velocity field to indicate positive 1 near the poles while
tracer experiments gave the opposite result.

Having examined the use of some diagnostic tools we will now take a short
digression in ray theory. If we define a Rossby wave of zonal wavenumber k

and phase speed c by

Aj
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then the refractive index for these waves is

* ]where

Palmer (1981b) and Karoly and Hoskins (1982) showed that F tends to follow

"ridges" of QK- This is an important point and will be illustrated shortly.

IA Qualitative Description of the Dynamics of Sudden Warmings

1 During a normal winter waves tend to follow paths expected from the

curvature of the earth, away from the pole as in Figure 2. However, if the
polar night jet is further north than normal a region of low refractive index
QK( may be produced, as shown in Figure 6, which focusses the EP flux towards

the pole, that is, F follows "ridges" of QK- From equation (12) of the last
section we can see this convergence near the pole. As the waves are growing

in amplitude

and from (1), as (v.i)/ acoio is large and negative near the pole, 4Ze< 0.

peletetoo ter

Fig. 6. Integral curves of F following "ridges" in Qk.

I
ii
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Of course the intriguing question that iamains about these warmings is
what is the mechanism causing the tropospheric waves to get large to begin
with? Plumb (1981) has viewed this problem as a resonant self-driving and
McIntyre (1982) considers the consequences of nonlinear refractive critical
layers but more work needs to be done to clarify this question.

V. ZONAL MEAN MODELS OF TRANSPORT OF CHEMICAL TRACERS IN THE STRATOSPHERE

The main reason for interest in the transport of chemical tracers has to
do with the concern that ozone (03) may be destroyed by certain pollutants
such as halocarbons. This has given rise to much research because 03 is

primarily responsible for the absorption of ultra-violet radiation in the
stratosphere and any large increase in the amount of u-v reaching the
biosphere could have serious consequences for life forms ortthe planet. The
ozone layer also contributes to the heating of the stratosphere as a result of
its interaction with u-v radiation.

In figure 7 the concentration of ozone in the atmosphere is shown (from

PERCENTAGE DISTRIBUTION OF OZONE

SUMMER WINTER

% in -4

histograms

,li__ 9T 11-17 '°

20 15 10 5 I m 50

10

50j

9 d 3O" V 31f 60" .00
LATITUDE

62% of total
is below 10mb SUMMER WINTER

<0-5% 0-5-07% 0.-8-10% 1.1-1.3% I4-I6

Fig. 7. The mean percentage distributions of integrated ozone amounts. )e

top histogram shows the mean distribution of total ozone in latitude
bands, the left hand histogram shows the mean global distribution of
integrated amounts in horizontal layers at different heights and the
central diagram the percentage of the total global amounts in annuli
round latitude circles in the different latitude bands and height
layers.
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Murgatroyd, 1982). The two regions of maximum ozone presence are at the

equator at about 30 km and in the winter polar regions at a height of around
20 km. However, the ozone is not produced in the latter region so it must be

transported there from the equatorial stratosphere. Understanding this
distribution involves a knowledge of the chemistry of 03, a very complex
field due to the hundreds of potentially important reactions, a familiarity
with radiative transfer problems and a knowledge of the dynamics of the

atmosphere. For a discussion of the many aspects of the ozone problem see the

review article by Murgatroyd (1982).

All scales of models have been employed to study this aspect of the
atmosphere from 3V GCMS, which are highly expensive, though the 10 models
often used by chemists to zonal average 20 models. These last can include

aspects not treatable by 1 0 models without the expense of GCMs. Earlier
models of this type applied eddy diffusion ideas to mean eddy flux terms but

now more models use wave mean-flow theory (Plumb, 1979 and Matsuno, 1980).

Zonal Mean Model of Dynamics of Tracer Transport

We will now consider a model of the dynamics of tracer transport in terms

of the primitive equations on a /3 - plane. A tracer of concentration R will

be assumed to be present such that

Sk__ -.- . (1)

S being a term representing the sources and sinks of the tracer. If we
zonally average (1) we obtain

4 + - W .~ _: -tV"PQ rA (2)

using the coordinates employed in the quasi-geostrophic flow section.

To simplify our analysis define the residual circulation in a slightly
different manner to previously, namely, let

where ( will be defined later in (10). It can then be shown that

where -4 (4)

Also let the O(a) flow be purely zonal, ' = (5(y,z), o,o) + O(a2 ).

Raving set up our system we linearize the tracer equation (2) to give

4-' V (6): , and define particle displacements by f'= ( s with

.(6)
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Also define an integrated source-sink term s' by

0 , '  - "E /. (7)

Then, if our initial conditions specify that all quantities are zero at t = 0,
(5) may be written as

Pit" '-i-f/,= - (8)

Similarly, if 9' is the potential temperature, then

Q -/ 9'#~ - I- ' (9)

where

If we follow Andrews and McIntyre (1978) and choose

- __ __ y(10)

(recall that RL - -7 / 9, before) then

V (11)

where G(y) represents the y-component of G. This equation gives us a linear

relation between G(y) and the gradients of .

Now, from (6),

11L (12)

and

(13)

so combining (11) - (13) we obtain

i k(j ' -(1'f')tK.P .- g (4

(Q%~~W~ (Tfx ~~2 ~ ~e) (15)

where

ji)4~ v ('T W ' ). (16)

Therefore, if i,j - 2,3

- -, × (17)

where

; U J (,J(-), tc' 1? (18)

)(18)
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Kr (19)

and (17) should be interpreted in tensor notation.

Employing (3), (4) and (17), the tracer equation may now be rewritten as

40 V? t_ t6(C)(20)

where&(s) and K(a) represent the matrices given by (18) and (19)
respectively.

We can now note the following points:

a) Rewriting the term with (a) in (20) as

-~ e~

where

shows that t(a) represents an additional advection term. This suggests
considering a new velocity

Vt v

where from (16)

which involves Lagrangian quantities ,S' , while X from (10) involves only
Eulerian quantities. It may be convenient to use v+ instead of v* in model
calculations which provide 171, and easily.

b) As shown in Holton (1981),

.'f '/I'. 'KI(I' )] + nonconservative terms

in q' and a' (22)

Here-n is normal to mean isentropes, i.e.

- ' - Vf (23)

/v7

1
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while T is tangential; thus if s' = q' - 0 B vanishes when the waves are
steady or when particle displacements are either parallel or perpendicular to

isentropes.

c) Similarly, the symmetric tensorlc(s) vanishes unless the waves are
transient (at least for wave amplitudesof O(a)). "(s) represents an

anisotropic diffusion or 'anti-diffusion' of tracers by the waves. Dispersion
occurs as the waves grow (G. I. Taylor, 1915, 1921).

d) The equation for 0 is

,f, " 1 6(24)

where A - 1/2 [W. ii• ]

The tensor appearing in (24) differs from the tensor appearing in (20) because

B contains terms in • The asymmetry in the two equations thus goes back
to the definition of

A Simple Example

Suppose the waves are linear, steady, inviscid, adiabatic (Q'- q' = o) and
chemically inert (S' = s' - o), but that Q and S are nonzero. Then =

a) =o and (20) reduces to

Rt + v*R + w*Rz=. (25)

Using (9) with q' - 0 and the assumption that (S = -P VL: , (10)
becomes in this case

as in previous lectures, so for steady, conservative linear waves, V* matches

its earlier definition; moreover * = v (see para. 6) but v.

The TEM equations reduce to

* (26)

(A7 5 / ,y ~O(27)

- e ~ S (28)

C 4 17 V # (29)

Now assume Q is independent of i (which may not be valid in general, but it
greatly simplifies matters) and that X - 0. Equation (30) then decouples from

the others so that (26) - (29) can be solved for the diabatic circulation * =

S# )forced by Q alone. The solutions for V* can then be used to advect
R from source (S p o) to sink (S <o).
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A simplified version of this example was studied by Dunkerton (1978) who
considered conservative tracers (9 - o) and neglected U and V W. With
these assumptions 9= Q/6z and 7* can be obtained from (28). The resulting
" is plotted in Fig. 8.

With this simple model, Dunkerton was able to resolve a long-standing
paradox. Brewer and Dobson, around 1950, inferred from tracer concentrations
a velocity pattern similar to that of Fig. 8, but later measurements of
Eulerian mean quantities, showed the existence of an indirect Ferrel cell in
the winter hemisphere (Fig. 9). Dunkerton realized that both velocity fields
could be correct since the Eulerian and Lagrangian flow fields do not match.

Dunkerton's model has since been extended. Pyle and Rogers (1980) redid
Dunkerton's calculation for ozone with a more complicated 2D model. Holton
(1981) included transients, dissipation, and considered N20, which has a
tropospheric source but is fairly inert in the stratosphere, while Tung (1982)
reformulated the problem in isentropic coordinates.

5 uMMer L;?

Fig. 8. The residual mean meridional circulation, 7", resulting from
Dunkerton's model. The flow is consistent with observations of
conserved tracers.

ki rec

/ 20

Fig. 9. The velocity field inferred from Eulerian measurements. Wave
activity strongly affects the winter hemisphere.
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VI. THE GENERALIZED LAGRANGIAN MEAN

David Andrews

Thus far, the discussion has been limited to small amplitude waves. A
question which arises is whether these results can be generalized to finite
amplitude. The answer turns out to be yes, at least in a formal sense, if
instead of using an Eulerian mean or a transformed Eulerian mean, a theory
based on Lagrangian means is considered; a Lagrangian description in its
classical form, however is inappropriate if particles move very far from their
initial positions, as they do when mean flows are present. To overcome this
difficulty, an idea originating in the work of Bretherton (1971) makes use of
a hydrid theory: It retains the Eulerian coordinates x and t as independent

variables, and Eulerian ideas like "steady mean flow:, but it is Lagrangian
because fluid particles are tagged. The hybrid theory is called
the"Generalized Lagrangian Mean" (GLM), where the term "generalized" refers to
the fact (discussed later) that a number of averaging operators can be
defined. Once set up, the GLM leads easily to a nonacceleration theorem and
conservation laws for finite amplitude waves (Andrews and McIntyre, 1978a,b;
hereafter I and II respectively).

Eulerian Average

We define an Eulerian average ( ):

(x,t) -, (x,t) with the requirement that it commute with differentiation

where A denotes either a spatial coordinate, xi, or t. (Other properties
of ( ) may be found in section 2 oi I.) We shall write ( )t or (-)Xi
when the averaging applies specifically to time or space.

Lagrangian Average and Particle Displacement

In the classical theory, (-)L is defined as a time average following a
particle. A particle displacement vector, (xt), can then be chosen such
that -t3y r
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so that a particle located at )( + (j,t) oscillates about a mean position K.
When the mean flow is at most O(a) the velocity of the particle is

-u' .- £96/ )
-t

where the second line follows from a Taylor expansion and where 4 - L + it'.

This can be extended to include an 0(1) mean flow by adding an advective term,

givin( --
tt- ~a f, .4-

In either case, the Lagrangian mean of a quantity is

V IX ,0- I

i,

Here the notation has been adopted.

In meteorological applications, it is often advantageous to apply spatial
averages (e.g. a zonal average) rather than a time average following a
particle. We therefore want to generalize the Lagrangian mean to

S= (,t1e)

where the average on the RHS of (1) is not necessarily over time. Defining

would then satisfy

- U (~1f;~)(2)

with

5 j D (3)

but can (-)L and be found such that they satisfy equations (1) (2) and
(3)? To make the notion of a Lagrangian average plausible when (--)L M (-)x
we consider the following mechanical analogy.

At t - 4o, let the wave amplitude be identically zero and consider a line
of fluid particles with spacing A x lying along the x-axis (Fig. 1). A thin
massless rod is joined to the particles by elastic bands. As the wave ampli-
tude grows, the particles become displaced from R by an amount equal to the
"elastic band vector" 3 (,t), where Z is the position along R. Although R
is constrained to stay horizontal, it remains In static equilibrium with the
particles and thus follows them if they undergo any mean motion. In the limit
of A x - 0, equations (2) and (3) show that the particles pull R at velo-
city jL . u(x + I , t)x. By requiring that I - 0 at t - to,
;L can be found in principle by integrating along mean traject-ries.

i1
'.4
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X 4

Figutc 10.

Given that ()L can be defined, several interesting properties follow.
Def ining

then (2) implies that

- k -L -

-

The point - + m moves with the actual fluid velocity a when the
point x mo;es with velocity &L. Use of the chain rule gives (I, equation
2.4a,b)•

01.

Averaging both sides leaves

Thus the Lagrangian mean of 10/0 acting on Vcarries through to both &>/At
A.V $ Individually without generating eddy contributions. In contrast, the

Eulerian average of a total derivative produces an eddy flux term:

'A, .

Pt.,)
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where (Ot fi 17). For this reason, the Lagrangian mean is especially
useful when applied to, for example, the equations for entropy S. It simply

transforms1 2
into the averaged equation

Again, eddy terms do not appear.

In general the Lagrangian and Eulerian means of a quantity are not equal.

The difference is called the Stokes correction and for small amplitude waves,

it can be calculated through a Taylor expansion:I /, .' £9(a ')

When 5= ui, 5 becomes the Stokes drift (Longuet-Higgins, 1969).

I Equations for Mean Flow Evolution

Writing the equations of motion as

where I is the gravitational potential
and defining as before

,.T -.'v ,-

j we want to evaluate

r7 (5)

leaving the averaging operator general for now. The algebra is performed in

Appendix B of I resulting in equation (3.8) of the same paper. If the mean

quantities are independent of x1 and ( ) - ( ) , then the x-component
of (5) is (equation (3.9) of I)

X. - -(6)
5/z -, + 2ep 1, 4')

where Xj is the Lagrangian disturbance forcing, q describes diabatic

effects, and ----- _._ _

R, -- -£. % 1 I , a (7)

Iis the pseudomomentum.
1
l
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In Eulerian form, the equation governing conservation of mass is

i e 4 / eo

A natural choice for defining a Lagrangian mean density, , is that it
satisfy

This definition leads to the relationship (equation (4.3) of I)

/- e 
(9)

The equations for the mean state become complete with the equation for
entropy (see above)

'5Li - * L-

and the equation oJ state

-- rC(-,L) r F(S .p) -F( AL (10),o

where - F(S,p). If the waves are O(a) in amplitude 6 is O(a2 ).

Specializing to a longitudinally symmetric mean flow and writing

14 701

the equations of motion are (equated 5.5 of I):

- ( 2)4Li),"P.

y - momentum equation = -2 (12)
z - momentum equation = X3 (13)

S L  - -L (14)
,2. + 5, (15)

(~ .(~+~ -R ) - (15)

We may now ask for the conditions under which steady unidirectional flow
is allowed in the presence of waves, i.e., the conditions for which

, f '00 0;g . .
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and ")

By inspection it is allowed when

and

'R
The waves must be conservative and steady; if 1 - 0 or&L " 0.
cumulative mean flow changes can be expected.

Wave Action

Suppose that ( ) is an ensemble average, and that the quantity Of- is
used to generate the ensemble. We also require $ 5 to be a
continuous function of 0 and that

( 5 )

Then by taking

O() (17)

the equation
-L + ' V. = ,5

i)A t -(18)

can be derived (Appendix A of II), where

1= , 4 (19)

e$j ,P OJ A (20)

,,. (21)

is zero for conservative motion and Ku is the cofactor of .1j in
det 1 .,,; 1 (see Appendix A of I). A version of (18) was found by

Hayes (1970) without making slow-variation or small amplitude assumptions,
although his work was based on a Lagrangian density and therefore could not
include dissipation. Using the continuity equation (8), (18) may be
rewritten as

Z'A
t 22
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When mean quantities are independent of x (writing x - (x,yz)) an
ensemble can be generated by translating theldisturbance pattern by a
horizontal distance oc

is the x-component of the pseudomomentum. Conservation of Pl, described by
(22), arises when mean quantities are independent of x. That only mean
quantities and not the whole system need be invariant to translations in x is
what distinguishes pseudomomentum conservation from momentum conservation as
usually encountered in physics. Similarly, time invariance of the mean state
yields conservation of pseudoenergy.

Suppose (II, section 4) the waves are linear and slowly varying, with

J - (K- - o 0.)

where O is now a phase shift. Taking () to be an average over phase
yields (after some manipulation)

where Cg is the group velocity. This is the form for action density and flux
derived by Bretherton and Garrett (1968)

We also note that in an earlier lecture, a measure of wave activity for
quasigeostrophic flow was found to be

and to satisfy the conservation law

Defining A1 such that

and substituting into 22a gives

K t4 i )o
This is not quite the same as conservation or pseudomomentum, but in the case
of slowly varying waves, the two agree.

Relationship Between (v*. w*.) and vL. w_)

From equation (4.12)

". (23)
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and from (5.9) 
1

0 J f9 (24)

where q' represents diabatic effects.
If u- (u,c~o) + O(a2), the Stokes drift becomes

-L =- .i
V V V -VVi (25)

A linearized version of (2)

A/

gives

(26)

while the linearized density equation in In p coordinates is

V- L 71H(27)

Solving for u' in (26) and substituting into (27) gives

Thus

and assuming zero wave amplitude initially,

o - h 8e )t =n 0 (28)

From (25), the Stokes drift can be written as

3-4 ZV' V. e~4 S PC, (29)
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and from (24)

Then

and

- ) + nonconservative terms
+ transient terms
+ 0(a3)

Hence v* = vL to O(a2 ) when the waves are steady and conservative.

Further Thoughts

It would be nice to apply the GLM ideas directly to the atmosphere, but in
general difficulties arise (e.g. in obtaining 5 ); however it may be
possible to calculate ( )L and I from simple circulation models. Some
progress along these lines has been made by Dunkerton et al (1981) who
calculate ( )L using a "modified Lagrangian mean". Another possibility
utilizes ) or S and Ertel's potential vorticity

as tracers, since these quantities are conserved in steady nondissipative/non-
forced flows. "P& tubes" might be useful (averaging around such a tube has
some analogy to GLM; cf, McIntyre, 1980). Yet troubles can be expected when
the waves reach large amplitude, for PO tubes twist up making 3
ill-behaved. "
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HOW RAPID IS PRANDTL-BATCHELOR EXPULSION?

William R. Young

The homogenization of a passive tracer in a flow with closed streamlines
occurs in two stages: first a rapid process characterized by shear augmented
diffusion along streamlines which takes a time of order pl/ 3(LU), where the
Peclet number P is Lu/ 5 (L, U and KC are length scale, velocity scale and
diffusivity).

This rapid process establishes a state where tracer concentration is
uniform along streamlines. Substantial variations may exist across
streamlines, however. The erosion of these cross-streamline gradients is
accomplished by the second stage: a slow diffusive migration of tracer
contours across streamlines. This second process takes a full diffusive time
L2 / j( •

TURBULENT DISPERSION IN CONVERGENT FLOW

Alan J. Faller

A theory is presented that gives an analytical solution to the kinematic
interaction of a convergent (or divergent) mean flow and turbulence for
spatially constant convergence and homogeneous turbulence of a specif L d
type. The turbulence is characterized by its mean square velocity,v , and
by its Lagrangian autocorrelation function. The problem is formally that of
the Langevin equation, and analytical solutions for the time dependence of the
ensemble-average variance of many fluid tracers are presented. The solutions
are compared with numerical solutions obtained by calculating the Lagrangian
motion of a large number of tracers.

This theory is an idealization of convergent flows that arise in Langmuir
circulations, longitudinal rolls in the mixed layer of lakes and oceans, where
convergent flows cause floating tracers to form lines parallel to the wind
(wind rows) and where turbulence tends to disperse the tracers. Similar
situations arise with constant density balloons in the upper atmosphere (12-14
km) where the convergent flow caused by the Hadley and Ferrell cells tends to
cause the balloons to converge into zonal bands in the vicinity of 30 degrees
latitude while planetary waves and "turbulence" disperse the balloons. Still
another example might be the subtropical convergences in the oceans where theEkman transport produces convergence while Rossby waves and turbulent eddies

cause dispersion.

Some results of the theory (Faller and Mignerey, 1982) can be summarized

in a few equations. For a linearly convergent mean flow, Zr - -Ay, where
the y axis Is perpendicular to the convergence line and A is the rate of mean
flow convergence, and for an autocorrelation of turbulent velocity given by

I
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and for the superposition of mean flow and turbulence

A A

the mean square position of an infinite ensemble of independent tracers obey
the equation

2 vT2 [2((t =~(1I-) -v-2\ exp(-(l+a)t*)
( t) G~+a) (7 -a l-a2 exp(cet

(1)

+ 
O (0) 

2 
2 _-

[() + 2 I) ]exp(-2at*)

where the rotation is

the mean square turbulent speed, isotropic and homogeneous,

the Lagrangian integral time scale for the turbulence alone,

oe = AT, the ratio of the tuLbulence time scale T to the convergence time
scale A-1,

CP , the initial convariance '(o)y(o),

t* = t/T.

It is easily shown that (1) is valid for all o(. by taking the limits
as 0<.- -1, 0, and I.

Note that y2 refers to mean, square distance of the tracers from the
origin (the convergence line), not necessarily the variance of the tracer
positions. Thus all tracers can start on one side of the convergence line,
..a4.need not be symmetrically distributed. The initial tracer variance is
YZ(O).

The steady-state solution Is given by the first term of (1) and can also
be written

(2)

If we were to use tglha advection diffusion equation with the usual diffusion
coefficient KO = 4A T, the steady state tracer variance (i.e., the concen-
tration variance) would be

(3)
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But with a modified diffusion coefficient KI = T/L-r e() the correct
steady-state result, i.e. (2) is obtained. K1 also follows Spiegel's
theorem, namely that:

When two processes with different time scales interact, the time scale
that characterizes the total system is the geometric mean of the time
scales of the two processes acting independently.>

In the present case the effective time scale would be

V- ~iiL(4)

and with a slight algebraic manipulation it is easily seen that

The steady-state result illustrates an important aspect of Lagrangian
statistics. In the steady-state tracer distribution there is no dispersion,
so the dispersion coefficient KV - V2 TV based on the total velocity,
V= ' + 4P must satisfy KV = 0. This implies TV = 0, where

T V (6)

and where P) is the autocorrelation of the total velocity. For the steady
state Iv' is given by

- i-,f (7)

which does indeed satisfy TV - 0.

Numerical solutions for an ensemble of tracers following Lagrangian

trajectories have been obtained using the formula

where A7,m is a vel ty, constant during At , for the tth particle
at time step m, and V'i,m is calculated from

Ah
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In (9), R is the one-time-step autocorIlation of 111 and is given by
R f 1 - £t/T for small A t/T, and ,vi m in a randomly sclected velocity
with variance A - -x. Equation (9) is a first-order Markov process that
approximates the exponential autocorrelation used to obtain (1).

Using (8) and (9) for many time steps and many tracers, the steady state
solutions for y2 are in excellent agreement with the analytical model.

Other material discussed in FM includes analytical solutions for an
oscillating autocorrelation given by

C0 S + (10)

and corresponding transient numerical solutions using a second-order Markov
process for 4rjm, namely

C +

and where C1 and C2 are related to bi and br in (10).

The problem of similar numerical calculations when the turbulent intensity
is spatially__Xariable was briefly discussed. In particular it was pointed out
that with 4-- - - , one cannot assume symmetrical turbulent velocity
distributions as were used with (9). The use of symmetrical velocity distribu-
tions violates the equation of continuity for an incompressible fluids. To
overcome this difficulty a transition probability model of turbulent dispersion

has been invented.
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WAVE/SHEAR-FLOW INTERACTION AND THE GENERATION

OF LANGMUIR CIRCULATIONS

Alan J. Faller

Langmuir circulations are helical rolls in the surface layers of lakes and
oceans with their axes along the wind direction. (Langmuir, 1938). They give
rise to lines of convergence on the ocean surface, and any floating materials
that converge into these lines are called wind rows.

Some characteristics of LCs were briefly reviewed. Their spacing on the
ocean is from 5 m to 200 m. and they have downdwelling speeds on the order of
1/100 the wind speed. As deduced by E. R. Baylor in 1962 from field observa-
tions of LCs (personal communication) small cells tend to agglomerate into
larger cells, an energy exchange from higher to lower wave numbers that is now
understood to be a ubiquitous characteristic of two-dimensional turbulence.
The largest scale in this energy transfer is usually about 2.5 to 3 times the

depth of the mixed layer.
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Laboratory films of LCs due to the interaction of crossed-wave patterns
and wind-driven shear flow (the Craik-Leibovich (1976) theory) were shown,
both for the wind blowing with and against the wave propagation direction.
The observed circulations were in agreement with specific predictions of the
theory (Faller, 1978) and reversed their sense of circulation in response to
reversal of the wind direction (Faller and Cartwright, 1982).

The second Craik-Leibovich theory is an instability theory developed from
the basic equations:

u + u Vu + V(r + u • Us) u x (v x u) + v'/u (I)
_s -S x (S xS u)+V-

V • u. (2)

where us is the Stokes drift of the wave field. These equations can be

derived by the usual expansion in wave amplitude, as in Cr.ik and Leibovich
(1976), or by the wave/shear-flow interaction theory of Andrews and McIntyre
(1978) as shown in Leibovich (1980).

The instability mechanism has been tested in a series of laboratory
experiments by the author and Craig Perini at the University of Maryland. A
film was shown illustrating an unstable laboratory flow consisting of small
waves (amp. = 0.3 mm, wavelength 30 cm) and shear flow 4_ = 0(0.25s - I .)
The instability clearly took the form of longitudinal rolls in the surface
layer. Again, these experiments give results that appear to be in agreement
with the Craik-Leibovich theory.
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POTENTIAL VORTICITY STRUCTURE IN THE NORTH ATLANTIC SUBTROPICAL GYRE

Donald B. Olson

Following a brief discussion of the Ertel potential vorticity for a

stratified fluid on a rotating earth, the distribution and forcing of
potential vorticity in a subtropical gyre is considered. If both diabatic
forcing, i.e., surface buoyancy fluxes, and the wind stress curl are included
the result is an asymmetric gyre which is less intense In the south than in

the north. The :7tential vorticity field which arises due to the Sverdrup
balance is asymmetric even in the case of a symmetric wind curl without any
diabatic effects. The north-south gradients in potential vorticity are
largest in the northern portion of the gyre. There It a tendency to form
regions of nearly uniform potential vorticity in the south-central gyre due to
the forced response. The well-known production of opposing merldional
gradients in potential vorticity between the uppe a.nd lower layers in the
southern gyre is pointed out. This effect can lead to the breakdown of the
flow to the west in the southern gyre due to bprzciinic instability.

The simple ideas derived from the consideration of the Sverdrup problem

are compared with the observed potential vorticity as approximated from the
thickness between isotherms in historical expendable bathythermograph data.

The basic asymmetry in the gyre is noted in both the potential vorticity and
the baroclinic streamfunction as approximated by the thermocline depth. Por-

tions of the gyre, however, appear to have more iii common with a Fofonoff gyre
than a Sverdrup circulation. The predicted reversal of the ,eridional poten-

tial vorticity gradient in the southern gyre does appear but takes the foro'of
a set of step-like fronts rather than the smooth gradients expected. These

bands of high potential vorticity gradient are associated with eddy potential
energy maxima and reversals in baroclinic shear in the surface layers. ThIe

possibility that these bands may be related to the final stable state follow-
ing a large scale instability and turbulent cascade is speculated upon.

EVOLUTION OF STRONG VORTICES

Glenn Flierl

One of the serious flaws in the standard quasi-geostrophic equations,

commonly used for understanding the evolution of mesoscale oceanic eddies, is
the requirement that the change in thickness between density surfaces must be
small compared to the mean thickness. In the case of warm core rings, the
thickness of the thermostadt layer may range from 500 m at the center to zero

at the edge of the eddy. Yet the prediction of the evolution of such features
is vastly simplified by noting that there is a dominant equilibrium balance of
forces in the fluid with the beta effect and time derivatives being relatively

weak.

I have constructed a non-quasi-geostrophic model for the evolution of a
warm core ring using a two layer model in which the upper layer has finite
volume so that the interface surfaces on a basically circular boundary. The

lowest order flow in the warm pool is much faster than the Rossby wave speeds



141-

$L2 and is not geostrovhic but rather is assumed to be In a state of
cyclostrophic balance. The time changes then occur on a time scale set by
( L)- and can be calculated by balancing the net Coriolis forces due to
translation of the whole pool with the southward forces caused by the 6
effect and form drags caused by wave generation in the lower layer. I have
assumed that the lower layer is deep compared to the typical upper layer
thickness so that the lower layer dynamics is quasi-geostrophic with Rossby
waves being generated by the motion of the warm pool.

For very deep lower layers, the generated waves can be calculated
explicitly and the form drags can be shown to induce a southward motion of the
upper pool and decay of its energy. This wave drag vanishes for very special
choices of the size of the upper pool and the lower layer motions are then
non-zero only just below the upper layer and have a net counter-clockwise
circulation with angular momentum equal and opposite to that of the upper
layer.

FINITE AMPLITUDE LONG WAVES IN A SHEAR FLOW

Melvin Stern

The temporal evolution of the cross-stream velocity v in an inviscid and
piecewise uniform vorticity boundary layer flow is investigated by means of a
large amplitude, long wave, and two dimensional theory. The maximum and
minimum v increase up to the time where "shocks" form, whereupon the neglected
short wave effects become important. The distribution of the large v (+) has
a universal qualitative character, resembling the distribution in a laminar
spike (Kovasznay et al. 1962).

Three dimensional processes are implicit to the extent that they account
for an anomalous vorticity layer assumed for the initial state of the two
dimensional theory. This predicts other strong nonlinear effects, such as
wave breaking and "mode locking".

1
'I
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THE SHAPE OF THE MAIN THERMOCLINE

Rick Salmon

Consider a two-layer ocean in which the lighter fluid has been divided up

into M parcels of equal mass. Imagine that the ocean surface is covered by a

horizontal network of N square grid-boxes, and let mi be the number of

light-water parcels beneath the i-th grid-box. The depth of the main thermo-

cline at the i-th grid-box is proportional to ei, which may be zero. A

state of the system,

{ ml, m2,...,mN} (1)

is defined by specifying the number of parcels at each of the N grid-boxes.
Each state (1) has an entropy,

S In W, (2)

where
w M: (3)

ml. ..... mN!

is the number of ways to realize the state. Replacing

In(mi !) ^J- milnmi

and then maximizing S subject to the conservation of total mass,

*- mi - M, (4)

and potential enstrophy,

I (5)

leads to (6)

In i  a - b fl/mi \where mi O
(6)

Here a and b are Lagrange multipliers corresponding to (4) and (5). Consis-

tent solutions to (6) exhibit hemispheric regions of uniform potential
vorticity fi/mi. This argument can be made less heuristic, and can

include the contribution of relative vorticity to (5) and the additional
constraint of energy conservation. Numerical experiments provide some

confirmation.

_%
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TRANSIENT TRACERS

William J. Jenkins

Observation of the penetration of man-made substances, in particular

nuclear weapons testing fall-out and industrial by-products, are providing us
with a unique opportunity to measure mixing and advection in the oceans. The

different "boundary conditions", time histories and geochemical behavior of
these substances highlight different processes and partF of the ocean and

allow us in a crude way to resolve the pathways and transport processes
responsible for their redistribution In nature. Due to the sparse sampling
inherent in the oft-times difficult measurements, and the uncertainty in some
of the boundary conditions, the conclusions drawn on the basis of tracer
studies may be by themselves ambiguous, but at least place crude "integral
constraints" on the physics operating in the ocean.

There are two extremes in time histories for the transient tracers. At
one extreme is the pulse-like injection of bomb produced tracers such as
tritium, 1 3 7Cs and 9 0Sr, while the other extreme is characterized by quasi-
exponentially increasing concentrations, e.g. 8 5Kr, fluorocarbons and CO2 .

The bomb-produced tracers generally have more northern hemispheric delivery,
whereas the "industrial" tracers are more globally uniform.

Carbon-14 produced by the bomb is intermediate between the two classes of
tracers since it is largely inventoried in the form of atmospheric 14 CO2 .

Its time history is spread out more in time than tritium yet it is now
decreasing. 14 C02 travels the same pathways as anthropogenic C02, but

with the important difference that the exchange timescale between the mixed
layer and the atmosphere is of the order of 15 years for 14 C02 , but only a
tenth of that for CO2 alone. Evidence from corals indicates that the pre-
anthropogenic 14C age of surface waters was of the order of 300 years - an

artifact of the relatively short residence time of water at the surface (a few
years) coupled with the largerresidence time of the same waters within the

thermocline (a few decades).

"Direct" measurement of anthropogenic CO2 is being attempted, but
estimation of the preformed (surface equilibrated) CO2 contents requires

large and perhaps uncertain corrections for in situ production by oxidation of
organic materials, and hence is still a somewhat controversial technique.
8 5Kr (half-life 10.5 years) is a by-product of nuclear fuel reprocessing,
has a well documented atmospheric history and being a noble gas has a simple
behavior. The difficulty is that measurement of 85Kr requires 200 1 of

water and specialized shipboard and shore-based equipment. One of the more
promising tracers is freon-li (a Dupont trade name for trichlorofluoromethane)

which is also well documented in the atmosphere, apparently inert in the
oceans and measurable at sea using small (ca. 100 ml) samples. Preliminary

results show major oceanic features in a believable way.

Finally there is tritium (half-life 12.5 y) and its stable, inert daughter
3He. The spike-like entry of tritium into the oceans coupled with the fact
that it exists primarily as water (H3HO) makes it an excellent tracer of
decade timescale transport. The daughter, 3Hie, has the interesting boundary

condition in that it is "zeroed" at the ocean surface, and builds up signifi-
cant excesses in a few months. This extends the sensitivity of tritium to

shorter timescales and provides a unique sensitivity to "backfluxing" to the

atmosphere.ii__
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INVERSE METHODS FOR OCEANOGRAPHY

George Veronis

Determining absolute velocities in the ocean is a long-standing problem
that has been attacked mostly via intuitive assertions about a likely level of
no motion. Wunsch (1978) formulated the problem in terms of inverse theory
which has been used with considerable success in geophysical studies. The
basis of the analysis is to assume a level of no motion and then to correct
that level so that conservation of mass is satisfied for each of the several
conservative layers that can be identified. The resulting system of equations
is a strongly underdetermined one and the procedure proposed by Lanczos using
singular value decomposition can be applied to find the (unique) solution when
contributions from the null space are omitted. This procedure gives a correc-
tion that departs minimally from the assumed level of no motion.

One difficulty with the inverse procedure is that large corrections are
required if the assumed level of no motion involves large initial imbalances
In mass conservation of the layers. These large corrections are often physic-
ally unrealistic. Fiadeiro and Veronis (1982) have proposed a means of circum-
venting the latter difficulty by running an empirical search for a best level
of no motion before inverse theory is applied. Ant important consequence of
that search is that it may suffice to give an acceptable level of no motion
with no correction. Part of the search procedure is to study the effects of
noise to determine how much of an imbalance in mass conservation can be toler-
ated because it is at or below noise level.

An alternative search procedure that makes use of the common solution of
Inverse theory leads to results that are close to those obtained with the
empirical search. Once that result is obtained one can derive an optimal solu-
tion by using a three-way trade-off involving the mean-square residual trans-
ports, the magnitude of the correction and the number of eigenvectors for the
correction. A great advantage of-this procedure is that the imbalances that
must be eliminated can be kept small so that for a satisfactory solution the
required correction may be so mild that the usual noise amplification accom-
panying such corrections Is avoided.

An alternative attack using all of the eigenvectors to obtain a solution
that lies within a prescribed neighborhood of the exact solution to the problem
leads to a more flexible and controllable procedure.

For all of the schemes that were adopted it is possible to use conservative
layers defined by density, potential vorticity and/or the Bernoulli function to
constrain the system. The latter two quantities may require the introduction
of higher-order processes. Methods for incorporating these higher-order
effects are the subject of an on-going study.
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ON THE DIRECTION OF EDDY MOMENTUM FLUXES IN BAROCLINIC INSTABILITIES

Isaac M. Held

In the analysis of the instability of atmospheric zonal flows to quasi-

geostrophic disturbances, one often encounters unstable modes that are essen-
tially baroclinic, deriving most of their energy from the potential energy of

the basic state, but with structures modified somewhat by horizontal shears in
the zonal wind. Among these modifications the tilt of constant phase lines

with latitude is of particular interest, this tilt being identically zero for
normal modes in a purely baroclinic problem. Few general results have been

obtained that predict even the sign of this tilt or, equivalently, the direc-

tion of the horizontal eddy flux of momentum, given the form of the mean flow.

I argue in this seminar that one can gain some understanding of this prob-
lem by examining the very simple special case of an internal jet instability
with very small growth rates, growing on a mean flow with small horizontal
shears. From the fact that the eddy potential vorticity flux in an unstable

mode is everywhere directed down the mean potential vorticity gradient, one
can show that the sign of the vertically integrated momentum flux divergence

is controlled by the vertical derivative of the mean potential vorticity
gradient, divided by the mean vertical shear, and evaluated at the steering

level. If this quantity is positive, the momentum fluxes are upgradient if
the mean flow has sufficiently large meridional scale, and downgradient if

this scale is sufficiently small (even though horizontal curvature of the mean
flow may be making a negligible contribution to the potential vorticity grad-

ient). If this quantity is negative, the flux is downgradient irrespective of

the meridional scale of the mean flow.

Numerical results show that this same qualitative behavior is also found

when growth rates are not small, and for the Eady and 2-layer models. At the
most unstable wavenumber, one generally finds a transition frow downgradient

to upgradient fluxes as the meridional scale of the mean flow increases. The
transition occurs at a scale comparable to the relevant radius of deformation

or, equivalently, the zonal scale of the mode.
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OPENERS AND CLOSURES

Willem V.R. Malkus

The word "closure" is used to describe a method of solution of the infin-
ite sequence of equations which relate moments of (turbulent) flow to other
moments, each equation of the sequence requiring a knowledge of unknown higher
moments. The usual technique of closure is to hypothesize an additional
relation between a higher and lower moment, thus terminating the sequence of
equations. Hence the nature of a closure assumption is to restrict the huge
number of solutions that could be found to a truncated version of the original
moment equations.

In exceptional circumstances a closure can be formally correct. An
example is given which leads from the Welander-Keller convection loop to the
Lorenz equations.

An "opener" is also a method of solution of moment equations of a flow
field. Rather than terminating the sequence of equations by a statistical
hypothesis, one explores the entire class of vector fields (among which are
the possible fluid motions) compatible with the first, or first few, moment
equations. A possible method would be to treat each compatible vector field
on the same footing, constructing an average value for any desired quantity.
However, the procedure that has been adopted is to seek that solution among
the many possibilities which provides a formal upper bound on some important
aspect of the flow. For example, upper bounds for heat flux have been found
in convection and upper bounds for stress have been found for shear flow. In
principal these upper bounds can be brought nearer and nearer to the realized
flow by the addition of higher order moments to reduce the class of possible
motions. While upper bound theory has produced the only guaranteed quanti-
tative results in turbulence theory, the bounds to date are not particularly
close to the observations. The extension of present upper bound results by
analytic methods may not be feasible, yet with the greater availability of
computing facilities, bound theory provides a unique way to pin down quanti-
tative aspects of turbulence statistics. First steps towards formal bounds on
the statistical stability of turbulent shear flow are described. Numerical
methods are used to solve ordinary time-dependent, nonlinear equations which
determine stable average fields "adjacent to reality
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CHAOS IS COME AGAIN

Edward A. Spiegel

This is an account of work done with Alain Arneodo and Pierre Coullet on
the temporal dynamics of triple convection. We have studied Boussinesq
thermohaline convection in a layer rotating about a vertical axis. We adopted
Rayleigh boundary conditions, that is conditions that make the solutions of the
linear problem trigonometric, and we have assumed bidimensional motion. If you
look into last year's notes, you will undoubtedly conclude with us that, in a
neighborhood of parameter space of the triple point where the three instabili-

ties are simultaneously marginal, the temporal dynamics may be described by an
amplitude equation of the form

X + Tx +'vx + x = k 6 xx 2 +kx 2  +k, 3 +kzx +kx 3  (1)

where x is the amplitude of the normal mode of linear theory that may go
unstable. To get this system, we have assumed a finite box so as to make the
number of modes that is allowed by linear theory countable. The parameters n,
v and X are given directly by linear theory. When all three of them vanish,
we are at the triple point where linear theory gives three vanishing growth
rates. The six ki are properties of the generalized null vectors that arise
in the linear theory at the triple point. There is no need to write down their
expression in terms of the various more conventional linear parameters, but we
do have those expressions worked out.

The problem in studying (1), if special circumstances do not lead us to a
preferred region of parameter space, is that this space is hexadimensional and
a complete exploration of it is not possible for us. We have decided to con-
centrate on the limit of small dissipation, that is, 0 <n<< I. In that limit,
if we require that no linear terms are lost, we get the asymptotic normal form

for this case, namely

A + A + A + 8A = ±A3  (2)

where the amplitude function A and the time have been suitably scaled. There
remain two parameters and a sign to be chosen in this version. If you were to
go back to the original Boussinesq equations and perform the standard ampli-
tude equations, with the introduction of a slow time, you would get (2) in
leading order.

Numerical solutions of (2) reveal the full panoply of modern chaotic dynam-
ical phenomena - period doubly, period halving, strange attractors, hysteresis,
intermittent behavior. Among the forms of chaos that we observe is that which
occurs near to unstable homoclinic orbits and is suggested by the work of
Shil'nikov. The behavior is so rich and complicated that even the amplitude
equations are too much to cope with. But just as the Boussinesq equations form
a crude model of some features of gfd, and the amplitude equations model the
temporal behavior of the Boussinesq solutions, there are mappings that model
the temporal behavior in all of the above. We have constructed bidimensional
Poincard maps that provide qualitative models of this behavior, as in a formal-
ly related study done with Charles Tresser. These in turn can be reduced to
maps in one dimension that leave no doubt that, in triple convection, chaos
occurs as close as you want to the triple point of multiple marginality.
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STATISTICAL MECHANICS OF FIELDS

Joseph B. Keller

1. INTRODUCTION

Statistical mechanics associates a probability density P(p,q,t) with a
mechanical system described by a set of coordinates q and conjugate momenta
p. Conservation of probability requires that the temporal evolution of P be
governed by the equation

Here H(p,q) is the Hamiltonian of the system. In terms of H, the equations of
motion of the system are

:- M- ) , (2)

'* rt ' r t
2. THE GIBBS DISTRIBUTION

A statistically steady state is one for which P(p,q) is independent of the
time t. Of course P must then satisfy (1) with ?/j t -0. In particular
any function of H(p,q), i.e. P[H(p,q)], is a solution of (1) which is
independent of t. This follows at once by using (2) in (1).

To find the form of P(H), Gibbs considered two noninteracting systems with
Hamiltonians HI and H2 . The Hamiltonian of the combined system is
HI+H 2 . Then because the systems are independent, their probabilities must
be multiplied together to yield that of the combined system.
Thus

P(HI+H 2 ) - P(HI ) P(H2). (3)

The continuous solution of (3) is the Gibbs distribution04.) e e-IV rAJ. (4

Here is a constant which Gibbs chose as = /KT, where K is Boltz-
mann's constant and T is the absolute temperature at which the system is
assumed to be in equilibrium.

3. THE RAYLEIGH-JEANS LAW

When the Gibbs distribution (4) is applied to a system with a quad-
ratic Hamiltonian, it yields an average energy of KT/2 per degree of
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freedom. A scalar field, such as a sound field, in a container of volume V

has.O/)(/)( 3 Vmodes with wavenumbers less than k, for k large.
Each mode is a degree of freedom, so the average energy of the field in all
modes with wavenumbers less than k is(K'l 1TX) .V . Thus the average
energy density E(k) per unit volume per unit wavenumber is V-1 times the
derivative of this with respect to k,

411" '(5)

This is the Rayleigh-Jeans law for the energy density of black body radiation,
except for an extra factor of two on the right side to account for the two
states of polarization.

This law leads to an infinite energy density when integrated over k, so it
cannot be correct at high wavenumbers. The correct law, discovered by Planck,
agrees with (5) for small k, but differs from it at high k due to quantum
mechanical effects.

4. CORRELATION FUNCTIONS OF FIELDS IN THERMAL EQUILIBRIUM.

The Gibbs distribution (4) can also be used to calculate correlation
functions of fields. A convenient way to do this is to write
u(x,t) =fp(x,t), q(x,t)]and to introduce the characteristric functional F [ ]
of the field, defined by

F[-A] :exP[tS )X 1 *IA(x1tJXdtJ P[H (LA)] 4IJ[ (6)

Here the argument "A (x,t) is a vector with the same number of components as
u(x,t) and D is the domain of x. From Ft-) the moments of U, can be
found by functional differentiation at k 0:

___ [-A]____=__Z A 54Vo( X1 t 14 44) (7)

--- L'<AE,=s i(

When the field satisfies a linear equation of motion, the Hamiltonian H is
quadratic. Then F can be evaluated explicitly by completing the square, and

the result can be written in the form.

-(

.... -] =ep 2 > -'t A''A
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This result (8) shows that the field is Gaussian with mean zero. All moments

can be expressed in terms of the two-point two-time moment

Kui(xt)uj(x',t')>. Furthermore, explicit expressions can be obtained
for this second moment in terms of certain Green's functions associated with

the field's equation of motion.

The derivation of (8) and of the expression for the second moment, as well

as various consequences of these results, are given in the author's paper
Keller (1970).

5. APPLICATION TO TWO-DIMENSIONAL TURBULENCE

We shall now apply some of the preceding considerations to an

incompressible fluid in two dimensional turbulent motion in a domain D. First

we introduce the stream function W(x,y), in terms of which the energy E,

enstrophy .f and palenstrophy are given by

b b

By analogy with (4), we introduce the distribution.

PL.- ]= 2 -1P (10)

In (10) O( , * and S are constants, and Z is the normalization
coefficient. The distribution (10)without the term in was considered by
Salmon (1982).

To use (1) we follow Salmon and introduce as a basis the normalized

elgenfunctions Ti , defined by

( 4 4= ioe b, q'0 OAV~ )D j %sC?(1

Then we write in terms of the Cp ,with coefficients k-l ,as follows:

-- 4

T. I X, (12)

By using (12) in (9) we get

(13)

Now (10) becomes

P( Z (14)
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From (14) we find that

There are asymptotically O"'O(14hl) A modes with wavenumbers less than k
in a domain of area A, when k is large. Thus the average energy density E (k)
of the fluid per unit area per unit wavenumber is

N"<~d 4;LJ - <y>/. (16)

By using (15) for y2 in (16) we get

E= (0( +TX (17)

For large k, this becomes the well-known result

( )- - (18)

In three dimensions the same analysis yields E(k) k-2.
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THE MODIFIED CUMULANT EXPANSION FOR DIVERGENT
TWO-DIMENSIONAL ISOTROPIC TURBULENCE

Shinichiro Yanase

We investigate divergent two-dimensional isotropic turbulence of finite
Rossby's outer radius of deformation using the modified cumulant expansion.
Such flow can be considered as a model of geostrophic turbulence in atmosphere
or ocean. 6 -effect is neglected in order to avoid complexity.

The fluid motion of quasi-geostrophic balance in a uniformly rotating
frame is written as

j C ? (C X P  - l

where 4 is the stream function, ..- the vorticity, V the kinematic
viscosity, Xthe inverse of Rossby's radius of deformation. It can easily be
shown that eq. (1) contains two fundamental conserved quantities for V z 0.

J EaP .2 /J 4LS =- . (2)

where

- 4 k-  total energy

(3)

pal potential enstrophy,

and the kinetic energy. the enstrophy, C the potential energy, P the
palinstrophy.

Using the lowest-order approximation of the modified cumulant expansion,
we obtain from eq. (1) the equation for 9(At) , the energy spectrum
fraction. Numerical integration of the spectrum equation gives the following
results:

1) The kinematic energy decays and simultaneously the potential energy
increases in times.

2) The motion larger than the radius of deformation is strongly suppresed
but the energy spectrum in the corresponding region does not remain constant
but changes slowly in time as,

F~~k c),cr f (k t J
and h, C) - 0 ,

3) In the large wave number region, the similarity law of energy spectrum
is identical with nondivergent case and the k- 3 subrange appears. However,
enstrophy cascade is enhanced by the decay of kinetic energy in low-wavenumber
region, and the palinstrophy is amplified compared with nondivergent two-
dimensional turbulence ( Km-0 ).

I
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THERMAL CONVECTION: NUMERICAL EXPERIMENTS NEAR THE ONSET TO
TURBULENCE AND COMMENTS ON THE APPLICATION OF CLOSURE

Jackson R. Herring

We have investigated Boussinesq-slip boundary thermal convection, focusing
on the nature of the transition from steady convection at low Rayleigh number
(Ra 30 Rc) to a chaotic regime at Ra> 65 Rc, where Rc = 27 Wr/4. For
most of the calculations reported here, the Prandtl number = 10. The numerical
technique is pseudospectral (- Fourier colocation) with an equivalent grid
point resolution - 32x32x32. Our goals are twofold: (1) to examine the tran-
sitional behavior of a dynamical system as the number of modes is increased
sufficiently so that the resulting equations are an accurate representation of
the underlying physics, and (2) to produce a data base by which to assess
closure techniques (DIA, etc.) at turbulent Rayleigh and Reynolds number.

Broadly speaking, what we observe is that the transition from a periodic
regime (at Ra . 40 Rc) through a quasiperiodic regime (50 Rc 4 R. !S R)
and into a chaotic regime (Re Z 70 Re) is accompanied by a rapid increase
in those turbulence parameters (such as skewness, S -< ( )L1<
isotropization and vertical vorticity) that measure three dimensionality.
Moreover, equivalent calculations in two dimensions fail to become turbulent
(or chaotic) if the numerics adequately resolve all significant scales of
motion. The computed values of the velocity and temperature skewness are
shown to be in rough agreement with experiments, such as that of Tavoularis,
et al (1978). The value of the Taylor microscale Reynolds number ranged from
2, at Pr - 10 to ^ 30 at Pr -1.

An examination of the contour plots of the flow provides an identification
of the various frequency components present in the power spectra of the velo-
city and temperature fields. At low Ra, the periodic regime consists in a
single frequency component at the Brunt-Vaisala frequency of the stable core
region. At this stage, the flow consists of near two dimensional convection
with (three dimensional) imbedded lenticular plumes. As Ra increases, the
roll boundaries begin to wave at a somewhat lower frequency, and the system
enters a quasiperiodic regime at Ra- zr55Rc. As Ra increases, further and
more complicated time dependence is introduced. This appears associated with
a tilting-wagging motion of the thermal plumes, followed by a pinching off of
blobs of fluid from the plume outflow anvils. In general, the temperature
field appears much more turbulent than the velocity, consistent with the rather
large value of the Prandtl number Pr (- 10). At lower Pr (.I) the flow appears
much more three dimensional, and at Ra 70Rc roll boundaries can no longer be
identified.

Finally, we consider certain aspects of two-point closures (notably the
DIA), inquiring as to what detailed features of the theory need to be preserved
unabridged in a comparison of theory and convection experiments (numerical or
otherwise). In this connection we present a comparison of closure with the
numerical simulation of passive scalar turbulence. We note that the long
correlation times at small scales (as suggested by the near laminar nature of

-'a
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small scales at small Reynolds numbers) is accurately preserved by the DIA,
but not by the tore abridged Markovian theories such as the eddy damped
Markovian or test field model. The research reported here is in collabora-
tion with J.H. Curry, J. Loncharie, and S.A. Orszag.
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HETEROCLINIC ORBITS AND IRREGULAR OSCILLATIONS

Louis N. Howard

To try to clarify some qualitative aspects of experiments on turbulent con-
vection, R. Krishnamurti and I have studied a 6th order spectral truncation of
the equations of 2D convection. This extends the Lorenz model (12), containing
it on an invariant 3D manifold. But it allows also a loss of symmetry corres-
ponding to asymmetric tilted cells which is impossible in LM, and appears not
to have been considered in previous extensions of it. At low Rayleigh number
(R) the attractors of the 6D model are those of LM, but below the subcritical
Hopf bifurcation in LM associated with the chaotic attractor the 'steady cell'
Lorenz c.p.'s (critical points) become unstable by a supercritical steady
bifurcation out of the Lorenz manifold -- 4 new stable c.p.'s appear. At

still higher R these undergo supercritical Hopf bifurcations leading to limit
cycles. From here up to over 15 Rc, we have numerically found limit cycle
attractors in much of the range, but also a number of chaotic gaps. Approach
to these gaps is often, but not always, through a sequence of period doublings.
But the chaotic regions seem also to be associated with the occurrence, at
special values of R, of heteroclinic orbits joining the unstable Lorenz c.p.'s
(which have some stable complex eigenvalues to the 'conduction' saddle point,
or to one another; alse sometimes homoclinic orbits. These heteroclinic
orbits are accompanied hy others joining the c.p.'s in the opposite order, so
these "heteroclinic pairs" are somewhat like homoclinic orbits. When a

certain elgenvalue condition is satisfied, Silnikov's theorem on the existence
of a horsehsoe map at a homoclinic orbit can be extended to the doubly

heteroclinic case (at least in 3D). This indicates the existence of a chaotic
set but not necessarily a chaotic attractor, and our double heteroclinics do
sometimes occur at values of R where there are limit cycles. However, these
are near the chaotic gaps, and finding these double heteroclinic orbits seems
to be a valuable tool in seeking chaotic attractors.

NowJ
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THE RESPONSE OF A WO-LEVEL OCEAN TO THERMAL FORCING

Michael K. Davey

The N. E. Atlantic is relatively warm (compared to a zonal average), and
this warm water has a moderating influence on the climate of W. Europe.
Several processes (such as N. Atlantic currents, deep convection in Norwegian/
Greenland Sea, eastern boundary currents) probably combine to maintain this
state. Various numerical and analytic methods are being used by the ocean
modelling group at Cambridge University to investigate several mechanisms --
one is described in this seminar.

The surface heat flow Q depends on the difference between the effective
atmospheric temperature TA and ocean surface temperature Ts , i.e., Q - Qg(Ts - TA)
(Haney, 1971); Qg = 30 Wm oc-1 ). This thermal input is spread over some depth,
HM. For this two-level model only cooling (TA<TS) is considered, so upper level
temperature T, is the same as T., and heat is spread over upper layer depth H1 .
This gives a thermal forcing term F1 = (TA-Tl)/T, where T = Hm 'cw /Qg is an
equilibration time (e = reference density, cw = specific heat of water). For
long time scales a similar benthic forcing term F2 = (TB - T2 )/T is also included
to simulate high latitude processes maintaining the basic stratification. TA and
TB are prescribed, as functions of latitude only.

With no surface wind stress or bottom friction, the flow is purely
baroclinic. In the absence of boundaries the meridional temperature gradient
(decreasing poleward) establishes a geostrophic zonal flow, on time scale ',
eastward at the upper level, westward below.

When eastern and western boundaries are added, the meridional pressure
gradient cannot be geostrophically balanced at the coasts, and Kelvin waves
are generated. These rapidly (c 200 km/day) pass information along the
coasts, creating warm NE and cool SW regions (N. hemisphere), with northward
surface currents, near the boundaries.

These anomalies are then spread slowly offshore by Rossby waves, more
effectively from the east, at speed c= 1 km/day. Because the thermal driving
depends on the ocean temperature, the eastern Rossby waves decay offshore on
scale c- . In this way a broad warm NE region is generated, almost steady
after time (there is further slow development by slow, lower-level effects),
with an associated weaker northward (upper level) current.

The model is simple enough to be solved analytically in many cases. For
the eastern region spin-up by long Rossby waves, analytic solutions can be
found with nonlinear advection terms retained in the thermal balance. Steady
nonlinear solutions can also be conveniently obtained by solving the problem
latitude-by-latitude.

Kelvin waves in this model are very effective at flattening longshore
pressure gradients, and perhaps have an unduly strong influence. Further
investigation of this is underway. Addition of wind-stress is planned, though
numerical methods will probably be needed to obtain solutions.
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ON THE 2D TRANSPORT OF STRATOSPHERIC TRACERS

K. K. Tung

A zonally averaged model of stratospheric tracer transport is formulated in
isentropic coordinates. There are some conceptual and computational advant-
ages, as well as some disadvantages, in adopting the potential temperature,
instead of pressure, as the vertical coordinate. The main disadvantage is the
fact that the "density" (mass per unit coordinate volume) in isentropic coor-
dinates is no longer a constant as in the pressure coordinate system under the
hydrostatic approximation. However, it can be shown that this density effect
is approximately negligible in the calculation of the mean diabatic circulation
and the eddy advective transports. What is gained by adopting the new formula-
tion is a conceptually simpler picture of the interplay of diabatic and adiaba-
tic processes in the transport of tracers. Mean diabatic heating (cooling)
forces a direct rising (descending) mean mass flow. Along the streamlines of
this mean mass circulation tracers are advected in the mean. These surfaces
slope downward and poleward in the lower stratosphere. In addition to advec-
tion, tracers are also dispersed from their mean path by transient adiabatic
processes in a direction parallel to the local isentropic surface. As a
result, the lines of mean constant tracer mass mixing ratio slope less steeply
than the mean streamlines but more steeply than the isentropic surfaces. The
effect of eddy transport on chemically reacting minor constituent gases is
also discussed.

THE ROLE OF DAMPED EQUATORIAL WAVES IN THE OCEANIC RESPONSE TO WINDS

Toshio Yamagata

We study the roles of damped equatorial waves in the steady oceanic re-
sponse to winds by use of both analytical and numerical methods. In particu-
lar, the sensitivity of equatorial currents to mixing processes is discussed
by using the model which allows the mixing of heat and/or momentum. In the
inviscid model the flows set up by winds of zero curl are eliminated by the
long Rossby waves emanating from the eastern wall and the Kelvin wave (if
excited) emanating from the western wall. The inclusion of mixing processes
may lead to the entirely different steady state associated with non-Sverdru-
pian flows. It is shown that the mixing of heat is essential to maintain
these flows. This is because the mixing of heat affects the attenuation of
divergent waves far more than does the mixing of momentum. Results from the
present study suggest that the mixing processes (especially, of heat)
significantly affect the adjustment processes in the equatorial ocean.
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CALCULATING THE REFERENCE LEVEL FROM THE BERNOULLI FUNCTION CONSERVATION

Pierre Welander

Assuming ideal, steady and strict-geostrophic flow in the oceans the poten-
tial vorticity Z fj can he estimated from density data along a
closed hydrographic section. Since Fi is conserved along streamlines lying
in isopycnal surfaces, an analysis of P(s) along an isopycnal boundary line (s
measuring horizontal distance along the section) can serve to determine con-
necting boundary points for the strejline field in such a surface. The
connecting points must have the same -values, but the analysis may not always
lead to a unique connection (some ambiguities may be removed when the density
is varied, under a smoothness condition).

The Bernoulli function B = p + gpz (no square velocity term in the geo-
strophic approximation) is also conserved along streamlines, and the connect-
ing streamline points should therefore also have the same B-values. Plotting
B(s) against P(s), we get a line which is covered twice as we let s vary from
zero to so (go once around the section); the same point P,B is met both at
the entrance and the exit point of a streamline. We do not know B, but can
estimate a baroclinic part of B, say B* - -30oZJydF +.9YZ , where zO is a
level surface. The complete function is B N B* + Vo(s), where Vo(s) is the
pressure along the perimeter at z=O, the same function at ailisopycnals. If
we plot B*(s) against P(s), the entrance and exit Points of a streamline
generally falls at different points P,B'and P,B* in the P-B* plane:the line in
theF-B-plane has "opened" and is now a curve which encloses a certain area.
The function B and therefore r(s) can be reconstructed from the curve B*(1)
by collapsing this back to a line which encloses no area. This can be done in
many ways for a single curve. However, if we consider many isopycnals this is
not the case, since B* must always be adjusted by use of the same function

r(s). Actually, the problem generally is an overdetermined one.

As an example, an exact analytical solution of the error integral type
(Welander, 1971) was used to generate the density field and associated fields
ofP and B* along a hypothetical rectangular section between 10ON and 200N,
100E and 10OW, as shown in Figs. la and lb (the section goes counterclock-
wise from the NE corner, s runs from zero to 40. The normal velocity is zero
at the top (z-O) and the bottom, which has a maximum depth of 800 m. The
corresponding curves BAPare drawn for a number of isopycnals in Fig. 2 (full-
drawn curves). The lines s - constant are also shown (dashed curves).

The surface B*(JiJQ' generated in theP-9- B*- space must now be collapsed
by translating every s-isoline without deformation along the B*-axis, until the
volume enclosed by the surface is zero. This can only be done in one way in
the present case (a uniform translation of all the isolines can always be
added, corresponding to a certain constant pressure change at all points).

It is convenient to minimize the moment M_- SS(0 5 ) -Y ; when this
is zero the volume is also zero. If real data are used the zero value cannot
generally be reached, but we get the best approximation in a least-square
sense. We use discrete values Bi,j at density values A: and station coord-
inates s
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Writing Bi, - B*j,j + pj, the moment is expressed as a quadratic
form for the un nown pj-values; the extremum problem is obviously reduced to
solving a system of linear equations for the pj's. Using only eight stations
and three isopycnals the following values for the pj's (in cm of water) were
calculated (p was set - 0, for convenience):

J-f2 3 4 5 6 7 8
0.728 -1.4670 -1.034 -0.612 0.119 0.848 0.425(-0.730) (-1.459) (-1.033) (-0.619 (0.120) (0.848) (0.427)

The exact analytical values are given in the second line. The agreement is
thus very good, the example given is, however, a particularly favorable one
since the s-isolines are plane curves and the collapsed surface a plane.

Relations of this method to so-called "inverse methods", which deal with
the same problem using mass conservation and a different extremum condition,
or the "f-spiral methods" which assume mass and vorticity conservation in a
local region, remain to be explored.
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Fig.l. Isopycnals(dashe4 isolines for potential vorticity (full drawn, case a),
and isolines for the baroclinic Bernoulli function (full drawn, case b),
for the analytical example described in the text.
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Fig.2. The surface obtained by plotting the baroclinic Bernoulli function against

the potential vorticity and density, for the analytical example described
in the text.The isolines for s are dashed.
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A WAVE IN ANTI-CYCLONIC SHEAR

Roger Hughes

A new type of first baroclinic mode wave which propagates on an anti-
cyclonic vorticity field is identified. It is of the vorticity class of waves
which contains Rossby waves amongst others. This anti-cyclonic shear wave is
produced by pressure variations distorting the vertical stratification in such
a manner that the associated vortex stretching generates the velocity variation
required for Bernoulli compatability with the initial pressure variation. The
wave travels at a speed characteristic of particles within the undisturbed
shear flow and is a low frequency and low wavenumber wave.

A PARAMETERIZATION OF VERTICAL DIFFUSION

Roger Hughes

It is supposed that the vertical diffusion within the main thermocline of
the ocean is governed by a concentration derivative of unspecified order.
Agreement between macro and micro structure determinations of the eddy diffus-
ivity is obtained by an appropriate choice of the order of the derivative. The
derivative is found to be fractional and determined according to Liouville.
The Green's function for diffusion in an unbounded ocean is determined and used
to predict diffusive fronts and plateau development in approximate agreement
with observations. The parameterization is used in a model of the annual ther-
mal cycle within the main thermocline. This is used to explain the observed
large depth of penetration of the cycle. Work on the above was done with Dr.
David Anderson (Oxford).

PROPERTY TRANSPORT AND LAGRANGIAN PARTICLE STATISTICS

Russ Davis

Statistical descriptions of the evolution of the concentration, e, of a
scalar property can be derived from statistics of the motion of Lagrangian
particles. The ensemble mean concentration from prescribed initial and source
conditions is determined by single-particle statistics, such as the Lagrangian
mean velocity' (t,ro) = )E (t,ro)> and displacement variance <tr1 (t,r)-ro 12).
Here r is particle position and Eo is position at time t = o. Dispersion of
the mean field is the sum of the dispersion of the centroids of the various
fields averaged plus a dispersion of each field about its own centroid
(relative dispersion). The statistics of relative dispersion are determined
by multi-particle statistics. The mean square dimensionJ'dx jj-c 2 G?>
where xc is the centroid, is determined by the mean square separationS1(tjo) 12;,.-< r(t'roso)-rE(t tro)l> 1Y 2e>

Methods for predicting from low order Eulerian statistics the mean and
mean square particle velocity, single particle dispersion, and particle-pair
dispersion are discussed and compared with simulations of particles in joint-
normally distributed velocity fields. Mean and mean square particle velocity
depend on correlation of particle density and the flow in compressible flow or
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when particles are deployed on surfaces in which the flow is divergent. These
statistics can be estimated using a statistically optimized approximate solu-
tion of (t + &.v) I iAo - V. When particle velocity statistics are
stationary, single pdrticle dispersion depends on the frequency spectrum of
particle velocity at zero frequency. This Lagrangian velocity spectrum is
predicted by a combination of Corrsin's conjecture (1960) and the assumption
of joint-normally distributed particle displacement. Particle migration and
dispersion in velocity fields with spatially varying statistics is discussed.
Mean-square particle separation can be predicted by an elaboration of the
single-particle method. In general the two-particle diffusivity is not a
function of the separation or mean square separation alone.
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MONOPOLES OVER VARIABLE RELIEF AND BOUNDARY FORCING AS A
PRODUCTION MECHANISM

Paola M. Rizzoli

The word "monopole" recently has been introduced into the literature to
designate isolated coherent structures, the main features of which are that
i) they are spatially localized; ii) are locally the energetically dominant
fluid structure; iii) are persistent; iv) have recirculating flow. For these
isolated vortices Gulf Stream rings, both warm- and cold-core, constitute the
typical example.

We choose as model the equivalent barotropic, quasi-geostrophic potential
vorticity equation on the -plane over variable topography:

where /v is the deformation radius. Stern (1975) has shown that
the necessary condition for the existence of a steady, isolated structure on
theP -plane is

'A (2)

from which the dipole nature of every possible solution follows.

Recently, Flierl, Stern and Whitehead (1982) have extended the above
theorem to isolated, slowly varying structures in stratified fluids with
arbitrary background flow but no net surface or bottom torques. They show
that (2) is generalized to:

(i +Xfr (3)
giving i) JbPOa- =0 modons as solutions; ii) " for
slowly vaffing, propagating monopoles. The latter, however, are not smoothly
behaved in the far field. The model equation (1) allows for steadily propa-
gating, monopole solutions with net angular momentum, which are well behaved
everywhere. The model equation for them is:

+ (4)

where 2  = F(z) is the analytic functional expressing potential vorticity in
terms of the stream function in the frame of reference translating with the
monopole.

We consider a weakly nonlinear topography, specifically ~ g 2~
if f, is the small dimensionless parameter of the system. Two parameter
ranges are explored.
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a) Narrow channel

LI, > L > Rwith Ll -channel width

L2 - wavelength in along-channel direction

Two dimensionless aspect ratios exist

and TheRoasby number is
Steady free solutions are nonlinear radiation, namelj nonlinear Rossby solitary
waves asymmetric in along-channel direction. These waves are weak and do not
possess closed recirculation regions.

b) L = .

Then the model (4) admits as solutions radially symmetric monopoles, valid in a
large channel (away from y --- o ). These monopies have high intensity
and close recirculation regions. Case (b) can be considered as the limic of

case (a) whe±nS'=R -:)P.

le want to pose the problem of boundary forced nonlinear radiation which,
as 4= _,- , may approach a structure with closed recirculation regions
in a finite domain. The problem of boundary forced linear mesoscale radiation
was considered by Flierl et al. (1975) and Pedlosky (1977) into the semi-
infinite -plane; and by Harrison and Robinson (1979) into finite domains.
All these models were, however, linear.

Instead, we choose to approach the boundary forced problem posed by model
(1) in its fully nonlinear form, precisely in the two above-considered para-
meter ranges. We choose to approach the problem in its time-dependent form.
This means solving the initial-value problem posed by the original model and
finding evolution equations which approximate it in the two mentioned parameter
ranges both for i) the free wave case, getting the evolution equation for the
nonlinear solitary radiation in the zonal channel, ii) the boundary forced
case. For the weak amplitude nonlinear radiation, solution of i) leads to a
Korteweg-deVries (KdV) evolution equation for the free radiation in the chan-
nel; the solution of ii) leads to two KdV evolution equations in the zero and
first-order streamfuncttons_'P and 11h , coupled through the boundary forcing
conditions. These coupled KdV equations are then solved numerically in a set
of numerical experiments. For these, the boundary condition is chosen so as to

f ce one single mode of the nonlinear free wave solution allowed by the model.
V -0 Ris successively increased too going to the limit of symmetrical,
hfgh-amplitude nonlinear waves with closed recirculation regions. These pre-
liminary numerical experiments strongly suggest the possibility of shedding
highly nonlinear mesoscale radiation from a northern boundary.
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THE COASTAL ECOSYSTEM OF THE NORTHERN ADRIATIC SEA

Paola M. Rizzoli

The northern half of the Adriatic Sea is constituted by the continental

shelf, which reaches very shallow depths ( -20 m and less) in the northern-most
extremity. In particular, the nearcoastal region adjacent to the Italian

coastline forms a shallow strip, with isobaths running parallel to the coast
and a topography gently increasing towards the interior of the basin. In the

region immediately south of the Po River delta--the major source of fresh water
input intc the Adriatic--important eutrophization phenomena have recently

occurr,.. iT, summertime, with the first emergency of eutrophized "red sea" in

the late summer of 1976. The "red sea" is constituted by important algae

blooms of dynoflagellata which last for several weeks and affect long strips
of water, extending from about 200 m to 3 km from the coast and for several

miles in alongshore direction. The controversial question thus arose whether

these eutrophization phenomena were caused by anomalous inputs of nutrients, in

particular phosphates, injected into the sea by the local industrial waste dis-

charges; or whether instead the nutrient source was due to the Po River waters

which, outflowing from the delta mouths, are carried southward along the
Italian coastline in the general cyclonic gyre characterizing the Adriatic

yearly average circulation. The general question to be answered was therefore:
where does the Po River water go? To answer this question the near coastal

circulation had to be hydrodynamically studied as part of the general circula-
tion of the Adriatic Sea. This last constitutes on average a cyclonic gyre,

with a broad inflow of Ionian and southern Adriatic warm salty water along the
Yugoslavian coastline and a narrower, more intense return flow along the

Italian one. In the return southward flowing current are embodied the import-
ant fresh water inputs of the Adriatic, concentrated in the northwestern side,

of which the Po is the dominant one. In wintertime, the interior of the North-

ern basin is typically vertically well mixed to the bottom; the temperature,

salinity, density fields are thus vertically homogeneous. In summertime, on
the contrary, a strong stratification is usually present, with shallow pycno-

clines varying from 3 to 10 m depth and disappearing only during occasional,
short episodes of northeast intense wind. A multilevel hydrodynamic model was
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constructed to study the transient Adriatic circulation, which in the near-
coastal region south of the Po delta can be approximated by a two-level system.
The model numerically integrates the horizontal momentum equation in linearized
form, integrated over each level; the continuity equation integrated over the
whole depth; advection-diffusion equations for the temperature and salinity;
an equation of state relating density to temperature and salinity closes the
system. The pressure is hydrostatic and is expressed in terms of a barotropic
component, depending upon the surface pressure and sea level, and a baroclinic
component, depending upon the interior density field.

The model needs as inputs: I) a realistic bathymetry, ii) the wind stress
field at the sea surface, computed from real data, given as surface boundary
condition to the horizontal velocity shears evaluated at the sea surface; Iii)
the air-sea interface evaporation, latent and sensible heat fluxes as well as
precipitation when available, given as surface boundary conditions to the temp-
erature and salinity fluxes; iv) the fresh water river inputs at the coast
given as horizontal boundary conditions and expressed in terms of daily aver-
ages of sea level, v) the sea level distribution at the southern open mouth of
the integration basin, evaluated from the harmonic constants of the coastal
stations at the same latitude. The model predicts the space-time evolution of
i) the sea level; if) the total horizontal transports integrated over the
whole local depth; iII) the horizontal transports in each horizontal layer;iv)
the vertical velocity at each level rigid interface; v) the horizontal dis-
tribution of temperature, salinity, density in each layer. The model was run
in a basic numerical experiment, with real input data, from September 15, 1978,
to October 16, 1978, taken as the typical summer test case. The numerical grid
had a size of 7.5 km and the resolution was increased to 2.5 km in the near-
coastal strip south of the Po delta. Model outputs were recorded every 2 hours
and subsequently averaged over 24 hours to filter the tidal signal. The model
was sampled at various grid points, from the interior region towards the coast-
line, at various latitudes south of the Po delta, using salinity as a "tracer"
of the fresh Po River water. The general conclusions which can be drawn from
the basic numerical experiment are the following. The "signal" of the Po River
watc., represented by the salinity field, is lost when progressing towards the
coastline, even during intense episodes of northeast wind, when significant
advective effects are present in the surface layer of 10 m thickness. The
nearcoastal strip, of about 10 km width, is almost stagnant. The total trans-
ports are essentially zero. Not only is there no sigificant southward trans-
port; in the whole nearcoastal region, of 30-35 km width, the total transport
in alongshore direction is most often directed northward, contrary to what
occurs in wintertime. This last situation--northward alongshore transport in
the nearcoastal region--seems to constitute the average late summer situation,
in the absence of a significant wind field and consequent wind-driven currents

in the surface layer.

Dynamical considerations (Csanady, 1978; Hendershott & Rizzolli, 1976;
Beardsley & Winant, 1979; P. Tung-Shaw, 1981) suggest that the nearcoastal
circulation is driven by the bottom torque, which dominates the dynamical
balance of forces as soon as an alongshore density gradient is present. This
alongshore density gradient determines the direction of the vertically inte-
grated flow in alongshore direction. In wintertime, with a dense water pool
concentrated in the interior of the northern basin, density decreases going
southward in the nearcoastal strip; the consequent transport is southward
flowing. In summer, the density gradient in the nearcoastal region reverses
direction, density actually increasing going southward; this produces a recir-
culation with alongshore current flowing northward. Current-records taken in
time-series fashion for 2 years and preliminary experimental results seem to
confirm the above dynamical considerations.
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DISPERSAL BY RANDOMLY VARYING CURRENTS

Gabriel T. Csanady

The long-term oceanic dispersal of persistent contaminants may be
approached as a problem in turbulent diffusion, with tidal, wind-driven, and
other variable currents relegated to turbulence. The mean advection velocity
in this problem is typically small compared to the rms fluctuation.
Therefore, close to a continuous, concentrated source puffs of contaminant of
all "ages" are present and have significant effects. "Old" puffs, i.e. those
released a long time previously, give rise to a background concentration
field. "Young" puffs affect the local contaminant concentration according to
the probability of their presence, quantified by the "visitation frequency".

The behavior of young puffs is governed by variable advection and may be
described approximately in terms of probability distributions obtainable from
current meter data. The visitation frequency can be calculated from the
distribution of escape probability density, a Lagrangian equivalent of flux.
A long-term effect of variable advection is the distribution of the
contaminant over an "extended" source, which serves as a starting point for
the random wall of old puffs. The conventional approach of using the
diffusion equation to describe this random walk is therefore valid as a
description of the near-source background concentration, provided that the
extended source is used in place of the physical source.
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SYMPOSIUM ON BIOLOGICAL AND CIIEMICAL TRACERS IN TIlE OCEAN
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GYRES AND TRACERS

Peter B. Rhines

Recent theoretical models of the wind-driven circulation point to the very
different ways in which tracers entering the sea at its surface can eventually
spread throughout the interior. The upper km or so is strongly driven by the
divergent mixed/Ekman layer, which creates Sverdrup circulation plus western
boundary currents and intense recirculation, particularly in the western
regions.

In the subtropical gyres the Ekman fluid is pumped downward and carries
with it tracers from the surface. This conjures up a picture of the 'meriodi-
onal' (y-z) ocean, with fluid entering and exiting at the boundaries, and flow-
ing up, down, north and south. This picture is deceptive however; unless we
integrate the flow field east to west, we must take account of the fluid
flowing zonally into or out of the section.

The v-velocity (north-south) that would be required by continuity of mass,
alone, in this section is

ve w L/D

where w is the wind-induced Ekman velocity. L is the north-south scale of the
gyre and D is its depth scale. But the Sverdrup relation gives us another
estimate of v.

va wf/ D.

The ratio of these two estimates, Rc, is just

Rc = f/1 L - alL,

a being the Earth's radius. Rc, which may be called the recirculation index,
is moderately large, say 2 to 5, for the major subtropical oceans. This means
that to this same degree the Eulerian mean circulation involves a large degree
of recirculation (fig. 1). The directly injected Ekman fluid squeezes into a
narrow current, for it must accelerate in the meridional sense from a velocity
vE to a velocity vS. To the level of scale analysis, this band occupies a
fraction l/(l+Rc) of the east-west domain. It is the strong potential vorti-
city constraint that forces this uneven response, physically analogous to the

fast spin of a top due to much smaller down-push on the screw-threaded spindle.

This extensive recirculation manifestly exists, and it forms the core of a
theory of the circulation by Rhines and Young (1982), in which lateral eddy
flux of potential vorticity, q, creates a gyre structure in which the mean
geostrophic contours (q - const. on constant potential density ( -) surfaces)
bend into closed or nearly closed loops paralleling the mean streamlines. In
some fraction of the gyre the fluid is sufficiently isolated from direct
mechanical or thermal forcing (on the particulard6- surface in question) that
the flow 'spins out' its potential vorticity to the point where it is uniform.

A recent analysis of GEOSECS tritium data, reported elsewhere in this vol-
ume by Sarmiento (page 17 7 ), is relevant to the competition between directly
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Ekman pumping
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Figure 1: Schematic diagram of the pattern of injection of surface waters
downward into the wind gyre. The inflowing water is squeezed into a narrow
band (a fraction "(1 + Rc)-  of width of ocean). The remainder being
occlupied by Eulerian recirculation. In the Pacific most *sopycnals of the
wind-gyre outcrop north of the zero-wind-curl-line, isolating them completely
from .this simple manner of injection.
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injected and recirculating flow. He finds that there is about five times as

much tritium in the North Atlantic subtropical gyre (between Cre = 26.2 and
27.4) as there would be if it were simply carried down by Ekman pumping. The
significance of this overburden of tritium is that it must enter by communica-
tion with tritium-rich water to the north: perhaps by cross-isopycnal mixing
at the northern edge of the gyre.

The 'recirculation index' of the gyre, which is thus quite large, refers
to the Eulerian-mean streamlines while the Lagrangian circulation involves
more rapid escape and entry into the gyre via mixing.

These remarks apply to a different degree in different oceans. The down-
pumping region in the North Atlantic, which is delineated by the line of van-
ishing wind-stress curl, extends quite far north to almost 550 N near
Britain. Most of the outcrop lines at the sea-surface corresponding to wind-
gyre q surfaces, thus lie in the region of down-pumping. In the North
Pacific, however, the zero-curl line runs more east and west near 400 N. (Is
this a cause or an effect of the ocean circulation?) This means that most of
the wind-gyre 1 surfaces reach the sea surface farther north, in the subarc-
tic gyre where the Ekman velocity is upward. Despite the lack of direct expo-
sure to surface properties, the North Pacific succeeds in ventilating to great
depth; tritium is seen on 4T - 26.0, which outcrops in the subarctic gyre, and
even on deeper surfaces which outcrop only in the South Pacific, as Fine, Reid,
and Ostland have shown us. The combined advection and mixing by the gyre
recirculation is apparently dominant.

The South Pacific provides yet another setting. As Haynes shows else-
where in this volume (page 262), the Circumpolar Current and the subtropical
wind gyre are capable of interacting in a strong fashion; the CPC is deflected
by the gyre (as if it were 'topography') and the gyre is deepened by the CPC.
This is an example of the way in which two distinct branches of the circulation
collaborate to determine the flow paths (the geostrophic contours, f 'g /,) z =
const. on G surfaces). Ventilation by the massive vertical scope of the
surfaces in this region must be significant..
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TRACING TRANSIENTS

William J. Jenkins

The penetration of bomb-produced tritium (half-life 12.5 y) into the
oceans has provided us with valuable information about decade timescale
transport and mixing. The stable, inert daughter produce 3 He extends this
sensitivity down to timescales of the order of a few months and adds a unique
boundary condition: sensitivity to "backfluxing" to the atmosphere.

In line with the relative "insensitivity" of the bomb-tritium transient to
shorter timescales, data shows the shallow North Atlantic subtropical gyre to
be homogeneous in tritium (Fig. I), due to the rapid recirculation (order few
years) relative to the transient timescale (order 1-2 decades). The daughter
3He, however, shows sinificant gradients. For example in the eastern
subtropical Atlantic, He results from a 1000 km scale triangle show both a
component of mesoscale noise and a significant mean gradient which is consis-
tent with geostrophically estimated (Beta Spiral) velocities.

A roughly meridional 3He section in the Western Atlantic (Fig. I taken
on the TTO cruise in 1981) between 40ON and 150 N shows the general
features of the subtropical 3He distribuiton: a lense of high 3He, about
2.5 T.U., is seen at about 500 m (about the o = 26.850/oo horizon) with

He poor water above and below. The paucity of 3He in the deep water is a
result of low tritium values - the tritium has not yet invaded the deeper
gyre, although significant mid-depth incursion is evident to the north The
upper waters, due to more effective "communication" with the atmosphere, also
are poorer in 3He. Gradients of 3He on isopvcnals in the shallow waters
are consistent with order 1 cm s- 1 meridional velocities.

An additional contribution of 3He to our knowledge is its sensitivity to
diffusion: i.e., back flux to the atmosphere. A simple pipe model
calculation (one dimensional flow with along-stream diffusion) with the
upstream end fed by surface water tritium yields a 3H-3He pattern which
scales as the radiotracer Peclet Number

2
P = ue TT-

where u is the velocity, K is the dlong-stream turbulent diffusivity and X is
the tritium decay constant. All data available for the time frame 1979-1981
fall on a 3H-3He curve characterized by Pe ~ 2. For velocities of the
order of 0.5 cm s- 1 (geostrophically estimated near the 3He maximum) this
corresponds to a K - 108 cm2s- I. However, two dimensional calculations
based on tritium invasion of a gyre circulation with a boundary current

S= o e -a( x+y) sin (Dx) sin (!.Ly)

show that shear dispersion in the boundary current can lower the required
diffusivity by almost an order of magnitude.
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THE USE OF SATELLITE DERIVED SURFACE PROPERTIES

TO STUDY OCEAN KINEMATICS AND DYNAMICS

Donald B. Olson

The use of satellite derived ocean properties distributions to follow

surface fields is discussed. A consideration of the errors inherent in

satellite derived sea surface temperature and chlorophyll suggests that it is
extremely difficult to follow isolines in these variables in regions with
small horizontal gradients. Even so two-dimensional wavenumber spectra for
"clear" imagery from areas as diverse as the Gulf Stream-Slope Water region

and the central Sargasso Sea provide similar spectra in terms of wavenumber
fall-off to high wavenumbers. These observations suggest that satellites
provide a reproducible picture of the spatial structure of the ocean surface
which has somewhat universal properties. The possibility of deriving sea

surface flow fields from time sequences of satellite images is described. The
surface streamfunction field can be derived by inverting the conservation

equation for the property as first suggested by Saunders (1973). This
technique is tractable with satellite data if it is posed in a natural

coordinate system tied to the mean isolines of the property. The problem
leaves an undetermined constant of integration for each isoline which must be

specified from some other data source. An alternate scheme for obtaining
surface velocities involves the tracking of patches of fluid which are

identified by anomalous temperature or chlorophyll signals. This Lagrangian
method is similar to the cloud-motion technique used to derive winds in the

atmosphere. A final approach to the problem of tracing surface features with
satellite data involves consideration of the time history .1 the location of
gradient maxima in either temperature or chlorophyll. The governing equation
is then a frontogenesis equation rather than a conservation relation for the

property. This process of picking out frontal features in images is the most
common technique in satellite work. The problem of interpreting the results
in some rational framework is only now being explored. An example of follow-
ing the translation and shape of a Gulf Stream warm core ring from a sequence

of satellite derived frontal positions is given.
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GLOBAL THERMOHALINE CIRCULATION MODES

Claes G. H. Rooth

Global asymmetries are observed in oceanic heat flux and in salinity
distributions. While the subtropical North Atlantic spans only about one-third
of the zonal (longitudinal) range of the North Pacific, it appears to contri-
bute at least as much to the global meridional heat flux. About one-half of

this flux in the Atlantic is imported from the Southern Hemisphere, and is
thought to be associated with a vigorous rate of deep water production in the
subpolar regions of the North Atlantic. (A baroclinic circulation of
107m3 /sec with a mean temperature differential of 150C represents a heat flux
of 0.6 x 1015 watts (.6 PW or Petawatts)). Coincident with this surprisingly
large Atlantic heat flux is a substantial salinity anomaly, the North Pacific
being fresh and the North Atlantic salty in its upper layers, relative to mean
oceanic conditions.

A causal connection between the high salinity of the North Atlantic and
its striking role as a deep water source is likely, as observed quite gener-
ally in the oceanographic literature. Salt effects on buoyancy are seen as

dominant in view of the small thermal expansion coefficient for sea water at
the temperatures in question, and also in consideration of the bound 3n down-
ward fluctuations of temperature presented by the freezing point. The relative
role of processes internal to the oceanic system and of external (atmospheric)

interactions in establishing these salinity anomalies Is far less clear in
spite of a clear preference for the latter in the current literature.

I have recently (Rooth, 1982), referred to as CR hereafter, addressed
these questions in the setting of some very crude hydraulic model systems.
The main points of this study, which I will review here with some extensions,
are the following:

1) An ocean like system, with equatorial symmetry in geometry as well as

in forcing, is susceptible to asymmetric circulation instabilities when
effects of heat exchange and fresh water transports through the atmosphere

are both included as forcing mechanisms.

2) The fact that the oceanic salinity fields are governed by what is

effectively a flux B.C. contributes, along with the nonlinear thermal
expansion, substantially to the likelihood that this motion mode will
occur.

3) If the intensity of the atmospheric fresh water flux is F, then the

heat transport and the warming of the downwelling basin is for small F
o(Fl/ 2 ) while the thermal effect in the upwelliag ba.3in is o(F), in the
simple model. This induces significant asymmetries even with quite weak
forcing.

The mechanism suggested here for the generation of large scale asymmetries

in the global oceanic salinity distributions depends only on meridional water
transport within the individual ocean basins and their hydrological catchment
areas. If water vapor transport divergences between different catchment areas
occur, then we have a forcing mechanism which will fix the circulation topol-

ogy, while the process presented here and in CR should enhance the response.

t•
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Also, the heat advection into the salty basin may enhance evaporation asymmet-

ries by providing a greater heat supply to sustain the associated latent heat
flux. Without such extra heat supply, greater insolation would be required
(e.g. by differences in mean cloudiness) in the basins with excess evapora-
tion).
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THE THERMOHALINE CIRCULATION SEEN BY TRACERS

Manuel Fiadeiro

The distribution of conservative and radio-conservative tracers reflects

the mean ocean circulation and the processes of diffusion.

Here, it is shown characteristic distributions of salinity and C-14

generated by simple models of the deep ocean circulation in a basin like the
Pacific. All the water is fed by the Antarctic Circumpolar Current.

The first model (3DMiI) was described by Fiadeiro and Craig (1978). It
corresponds to the classical picture of Stommel and Arons (1960) deep ocean

circulation. The upwelling velocity increases linearly from zero at the bottom
(4 km) to a maximum value under the thermocline (1 km). The horizontal

circulation is cyclonic and fed by western boundary currents.

The second model (3DM/II) was described by Fiadeiro (1982). The upwelling
velocity attains a maximum at 3 km and decreases to the base of the therrmo-
cline. The idea is to simulate in a crude manner the change in dw/dz produced
by the longitudinal gradient of density in the real ocean. The western bound-
ary currents transport denser Antarctic water at the bottom and lighter Inter-
mediate Water at the top. This creates a greatcr vertical density gradient in
the west than in the east. The corresponding horizontal gradients should make

dw/dz to increase in the lower layers and decrease in the upper layers.

It is shown that the qualitative features of the tracers are well repro-
duced with model 3DM/II when the upwelling velocity is 2.6 m/y at 3 km and I
m/y at 1 km. The convergence of the Deep Wate..r (over the Bottom Water) makes

the western boundary current flow south and creates the typical vertical
profiles of the so-ithwest Pacific. The minimum values of C-14 occur at a

depth of 2.5 km and spread south over the incoming Antarctic Bottom Water. Of
the 14.5 Sv of Antarctic Water that flow into the Pacific only 3 Sv cross the

thermocline, the rest returns to the Circumpolar. The residence time of the

water in the Pacific basin is 700 years.

REFERENCES

Fiadeiro, M. and H. Craig, 1978. Three-dimensional modeli.ag of tracers in the

deep Pacific Ocean: I. Salinity and oxygen. J. Mar. Res., 36, 323-355.



AD-A122 864 1982 SUMMER STUDY PROGRAM IN GEOPHYSICAL FLUID 0YNAMICS
AT THE WOOD S HOLE. U) WOODS HOLE OCEANOGRAPHIC
INS TTUT ON MA G VERONIS ET A- NO0V 82 WHOT-82-45

UNCLASSIFIED N00014-82 _0 007 9 F/ 0/ 0



1 .0 11, 1112.
UL. o

11111 111.- 2_0

IIIIIN llI ''ll-~

MICROCOPY RESOLUTION TEST CHARI

NAONAL SURAL) O S1ANDArDS 1963 A

pq



177-

Fiadeiro, M. 1982. Three-dimensional modeling of tracers in the deep Pacific
Ocean: II. Radiocarbon and the circulation. J. Mar. Res., 40, 537-550.

Stommel, H. and A. Arons, 1960. On the abyssal circulation of the world.
Part I - Stationary planetary flow patterns on a sphere. Deep-Sea Res., 8,
39-64.

PENETRATION OF TRITIUM IN THE NORTH
ATLANTIC MAIN THERMOCLINE

Jorge L. Sarmiento

A box model of tritium penetration from the surface mixed layer to the
interior along isopycnal surfaces in the North Atlantic requires an equivalent
flux of the order of 40 x 106 m3 s-1 for the 06 range of 25.6 to 27.4 in
order to fit 1972 tritium observations. This is far in excess of the
-8 x 106 m3 s-l downward Ekman pumping calculated from yearly mean

winds acting on the wintertime outcrops. The implication is that processes
other than Ekman pumping, such as wintertime convection and mixing along
isopycnal surfaces, are responsible for a majority of the observed tritium
simulation using a primitive equation ocean circulation model.

EDDY KINETIC ENERGY FROM SURFACE DRIFTERS AND DEEP FLOATS

Philip L. Richardson

One hundred and ten satellite tracked freely drifting buoys were used to
measure velocities and trajectories of the near surface currents in the North
Atlantic. Values of mean velocity and the variance about the mean were calcu-
lated for different regions. A horizontal map of eddy kinetic energy was pre-
pared on a 20 by 20 grid between latitudes 20-55ON; maximum eddy energy
(.,3000 cm2 /sec2) coincides with the high speed Gulf Stream jet after it
leaves the coast and begins large amplitude meanders. A tongue of high eddy
energy coincides with Stream's path eastward and around the Grand Banks Into
the Newfoundland Basin (-_1000 cm2 /sec 2) with a weaker extension eastward
across the mid-Atlantic Ridge near 450 N. A second weak extension reaches
southeastward from the Stream and crosses the mid-Atlantic Ridge between
30-350N. North and south of the Stream eddy energy deca s rapidly reaching
values of 200 cm2 /sec2 in the mid gyre region and 100 cm /sec in the
Eastern North Atlantic and North Equatorial Current. Although the gross dis-
tribution of eddy energy Is similar to that determined from ship drift measure-
ments, there are significant differences. Eddy energy from drifters amounts
to approximately twice the value measured by ship drift in the Gulf Stream and
one-half the ship drift value in the mid-gyre. It is suggested that the
difference in Gulf Stream values is due to the horizontal averaging of meso-
scale motion by ship drift measurements and that the difference in the gyre
interior Is due to errors in velocities determined from the ship drift
technique.
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THE GULF STREAM EAST OF CAPE HATTERAS

T. Rossby

Since September, 1980, we have maintained a program of bimonthly sampling
of the velocity structure of the Gulf Stream. Each section consists of a set
of velocity and temperature profiles taken along a 150-200 km long line cent-
ered near 360 N, 73oW from the Slope Waters to the Sargasso Sea.

Preliminary analysis of the data (through May, 1982) yields a mean trans-
port of 78 + 11 Sverdrups (based on six complete sections) between the surface
and 2000 meters. Numerically this is identical to Worthington's reanalysis of
30 hydrographic sections in this general area, for which he assumed a level of
no motion at 2000 meters. Our data, on the other hand, indicate a mean down-
stream velocity at 2000 meters of 4-5 cm/sec. This would add 10-15 Sverdrups
to his estimate. The reasons for this discrepancy are now being examined more
closely.

The Pegasus section is located in an area of entrainment from both the
Slope Waters and the Sargasso Sea. The rate of entrainment is equivalent to
20 Sverdrups/100 km with about two-thirds of the total being supplied from the
Slope Waters.

The variability of the velocity structure from one section to another is
striking. Sometimes it is broad, and sometimes it is highly compacted near the
north wall (15 C at 200 meters). This is, of course, expected since it is a
derivative of the smoother density field. One section revealed a very strong
cross stream velocity field (detrainment or subduction?) relative to the dens-
ity field. We have also, on several occasions, found eddies embedded within
and advected by the Stream. We note the qualitative observation that the maxi-
mum surface velocity and transport do not seem to be correlated.

The field program is intended to span two complete years. The questions we
plan to examine with this data set include 1) mass and heat flux variations
(esp. the annual cycle), 2) mean and eddy kinetic energy distribution, 3) the
coupling between the baroclinic and barotropic fields, if any, and 4) local
dynamics and short term variability.
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OCEAN STIRRING BY GEOSTROPHIC TURBULENCE

Greg Holloway

ABSTRACT

Stirring and transport of passive tracer fields by geostrophic turbulence
is examined by means of numerical simulation, equilibrium statistical mechanics
and turbulence closure theory. A ccasistent account emerged.

First consider the problem with no mean fields present, i.e. we suppose
fields consisting of random fluctuations of vorticity and of tracer. Fluc-
tuations may be given either as initial conditions or by random forcing. The
flow evolves as "two-dimensional turbulence". It is seen that tracer variance
is transferred efficiently to all scales. A significant result is that the
transfer of tracer variance is more efficient than the transfer of vorticity
variance. This result, seen both in closure theory and in simulations is due
to the role of wavenumber-local interactions which are effective for the
transfer of tracer but not of vorticity. A consequence is that tracer variance
decays through explicit diffusion more quickly than vorticity variance decays.

A second result, seen from equilibrium statistical mechanics and confirmed
by simulations, is that the absolute equilibria spectra (i.e. given no forcing
or dissipation) are different for tracer and for vorticity. Because vorticity
is not passive (viz. w - curl u), we see again that vorticity does not behave
as a passive tracer although each is an aIvected quantity.

When a mean gradient of tracer concentration is imposed, we may examine
average spatial fluxes of tracer. This is done with and without Rossby wave
propagation (given by 000 ). With no Rossby waves and for isotropic turbu-
lence, tracer flux may be related to mean gradient through an eddy diffusivity
coefficient. Closure theory and direct simulation show that the diffusivity
can be reasonably estimated by mixing length K * u'l' with u' a characteristic
(rms) velocity and 1' the scale size of dominant eddies. A further result is
to show that the wavenumber decomposition of the tracer flux has dominant
contributions on length scales somewhat larger than the most energetic eddy
scales.

Rossby wave propagation ( (3fo, rigid lid, barotropic) induces an isotropy
in an eddy diffusivity tensor. There are both direct and indirect effects. A
direct effect is to suppress meridional diffusivity through dephasing of flux
components. An indirect effect occurs because 9 also induces anisotropy in
the velocity field, enhancing zonal over meridional motions. The result is
further to suppress meridional diffusivity with only slight net suppression of
zonal diffusivity. Rossby wave effects also shift the dominant wavenumber
contributions to shorter scales for both meridional and zonal fluxes. Turbu-
lence closure theory yields relatively simple estimates for the magnitude and
degree of anisotropy of the eddy diffusivity tensor in agreement with
simulations.

Intermittancy as measured by ratios of fourth moments to variances is seen
to depend upon the wavenumber sascade of variances. In particular, approach to
unforced, non-dissipative equilibrium shows a relaxation of intermittancy as
moment ratios approach their Gaussian values.
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Although an eddy diffusivity concept appears to be appropriate to cases of
transports on large scale gradients, the concept is not appropriate for the
stirring out from an initial tracer spot which is small compared with eddy
sizes. Direct simulations show little evidence of transition toward a pseudo-
diffusive regime even after tracer filaments have been drawn out over distances
larger than the dominant eddy sizes.

A COMENT ON MODELLING TURBULENT TRANSPORTS IN MARINE ECOSYSTEMS

Greg Holloway

ABSTRACT

Time dependent velocity fields in the presence of spatially varying pro-
ductivity potential are shown to induce a mean "virtual velocity" which acts
to transport biomass. Effects of such virtual velocity cannot be represented
in terms of eddy diffucivity. Inclusion of virtual velocity terms appears to
overcome some failures of simpler averaged models of marine ecosystems. In
particular, convergence of the virtual velocity provides an effective mechan-
ism for the formation of a phytoplankton maximum at or below the mean
compensation depth.

DISCUSSION

The importance of turbulence for the maintenance of primary production in
the upper ocean has been appreciated for a long time. Turbulence both en-
hances production by supplying limiting nutrients and may reduce production by
transporting organisms downward to light limiting depths. Efforts to model the
role of turbulence usually focus on the specification of eddy diffusion coeffi-
cients. In his lecture at the 1982 WHOI-GFD program, Dr. J. S. Wroblewski has
demonstrated that time-dependent velocity fields in the presence of spatially
varying productivity potential (growth rate) will produce average counter-gra-
dient transports of plankton. (See also Wroblewski and O'Brien, 1981) These
transports would seem to imply negative eddy diffusivities in an equation for
averaged plankton distribution. However, explicit inclusion of negative
diffusivity causes equations for average concentration to become ill-posed.
(Solutions become non-unique after arbitrarily short times in absence of
higher derivative terms.)

Dr. Wroblewski's results are at once enlightening and discouraging. Espe-
cially it would be discouraging if realistic plankton simulation required
sophisticated, computer-intensive simulation of the detailed space-and time-
dependent velocity field. Such velocity simulation seems barely possible
(indeed, doubtful) at modern levels of capability in computational fluid
mechanics. In any case, detailed velocity simulation would seem to preclude
seasonal or longer duration experiments.

HIere I'll try to make two points. First, time-dependent velocity fields
in the presence of spatially varying mean production potential give rise to a
transport term which is independent of the mean phytoplankton concentration
gradient. Therefore, it is inappropriate to represent such transport as a
Pickian eddy diffusion. Instead, the transport term appears simply as a
virtual velocity carrying the mean concentration. A hope is that inclusion of
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virtual velocity effects will re-establish the utility of simpler averaged
i production models. Second, it appears that strong convergence of the virtual

velocity field may provide an efficient means to answer an old problem, namely
to explain the formation of chlorophyll maxima at or below the euphotic zone
compensation depth.

I To provide the clearest derivation of virtual velocity, consider quite a

simple phytoplankton model with properties varying only in depth z and time
I t. Let phytoplankton concentration pC;0) evolve as

where w is vertical velocity representing actual water motion, w Is any
sinking (Riley, Stommel and Bumpus, 1959; Steele and Yentsch, 1960) and K is
explicit diffusion which, in fact, will be negligibly small. The right side
of (1) serves only approximately to express biological dynamics where A(z) is
a "production potential" determined by light and nutrient availability and
expressing (albeit inadequately) herbivore grazing pressure. For more thorough
account of the biological dynamics terms see Jamart et al. (1977) or

IWroblewski (1977).
Next suppose that p and w may be written in terms of mean and fluctuating

parts p - P + p', w - W + w'. Averaging is in the sense of an ensemble
average although in the present simple case one can think of horizontal
averaging. From incompressibility and assumed horizontal uniformity,
0, and hence W-0 for our simple case. The goal is to obtain an equation for

mean P without reference to fluctuations p' or w'. Averaging (1),

Heuristic arguments and engineering practices have established a tradition of
seeking to represent eddy fluxes w'p'> in analogy to Fickian diffusion

<W'p' I - (3)

Guesses such as (3) usually suppose that p is a passive, conserved variable
and then depend upon empiricism to estimate eddy diffusivities K*. In the
present case, nonconservation of p according to the right side of (1) yields a
counterexample to (3).

Suppose a fluid parcel undergoes an oscillation in the vertical. Parcel

displacement might be due to turbulence or might be a manifestation of
internal wave activity. Let the vertical displacement C be given by

1 u OL Sin4t (4)

Suppose the displacement is small compared with the scale height 140A/ald .
As the test parcel moves in the varied background, we suppose that production

potential as experienced at the parcel varies as ^A. C11/1% . Thus

= ("x 0, Sn.)(P+ (5)

II
1

I[ .. . - . . . . . . .. i . . .
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where dot (.) denotes time derivative following the parcel. Assume, as we
check later, that p'2 <<pa. Hence from (5)

Ca (6)

Averaged over a period of oscillation,

WIP,) W - e P (7)

where w' - = a w cos wt and Xo<<w is assumed. Note that the conditions

are just the condition f,'2 p2

If many wave or turbulence components contribute to the vertical displace-
ment field then those contributions just seem to yield a total displacement
variance<p), generalizing (7) to (w'p') - aP. A flux of this form
does not represent Fickian diffusion but rather represents advection of mean P
by a virtual velocity

< (9)

Two points are to be stressed. W* is not a transport of water hence does
not satisfy any incompressibility constraint. Also, W* Is distinct from, and
typically much larger than, any sinking ws. It may be more appropriate to
think of W* as a kind of pumping.

The mechanism just described will act in parallel with turbulent exchange
processes leading to (3). Thus, the central point of this note is to suggest
that (3) be replaced by

(wlK t VIP (10)

with W* given by (9). Then (2) is

+ i [(w*4,vjs)P] - = P (11)

where K has been included in K*.

Extension of (11) to a model in two or three spatial dimensions is
apparent. Thinking of a coastal upwelling environment, let x be the offshore
coordinate and U(x,z) the mean offshore velocity. Then

V -6 P1 1((W' +W)P (12)

with ;"1 4"O. Analogously to (9) we might suppose U* - - OA <X>
where (12 is a variance of onshore-offshore displacements and KS and KI
are horizontal and vertical eddy diffusivities. Further contributions to-both
W* and U* may arise through any cross terms ().

I
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Some implications of (10) are immediate and, I think, exciting. First,I *(10) easily allows us to rationalize the results of Wroblewski and O'Brien
(1981). A flux which should have been of the form W*P is being misrepresented
in terms of -K* )P/fl , leading to negative and singular values of K*. This
problem is most extreme just above the depth of maximum P. Removal of the W*P
component should restore a plausible, everywhere positive K* profile of form
similar to Jamart et al. (1977). The important result is that we may
re-establish the utility of very much simpler, averaged models for primary
production by adopting the formulation (10).

The second implication from (10) is to find a highly effective mechanism
for the formation and maintenance of a deep maximum of phytoplankton. In many
areas where nutrient depletion occurs, a maximum of phytoplankton concentra-
tion occurs at depths greater than the compensation depth (depth at which
photosynthesis = respiration plus grazing, i.e., ')wo in the present case).
As discussed by Steele and Yentsch (1960) and pursued in Jamart et al. (1977),
maxima of phytoplankton below compensation depth seem only possible through
differential sinking, i.e. dW$/ > 0 . However, to account for observed
chlorophyll profiles, one would seem to require JWsl as large as I m/day or
more above compensation depth falling to zero somewhat below compensation
depth. Possible sinking speeds for phytoplankton of diameters usually less
than 10^ and for plausible cell densities are about two orders of magnitude
too small to achieve the required effect. (Other facets such as selective
grazing (Hobson and Worenzen, 1972) appear to alter the taxonomic composition
at the phytoplankton maximum but not to modify significantly the depth of
occurrence relative to compensation depth). Thus a classical mystery of
plankton ecology remains. Is W* the explanation?

Consider a plausible (I think) scenario. Suppose )z 1 day-1 at about
20 m with a compensation depth at 30 m, hence~z 0.1 m" day-1 . Vertical
displacements due mainly to internal waves may commonly exhibit values of 3 or
4 m at 30 m depth, hence <12> _ 10 to 20 m2 yielding jW*I of 1 to 2 m
dayl above compensation depth. (Displacement by internal tide is not
included. Deterministic low frequency processes like tides should be treated
explicitly.) Respiration and grazing will cause X to take small negative
values below compensation depth with a/-jo 0 . It appears that convergence
of W* will achieve just the effect sought by Steele and Yentsch (1960) or
Jamart et al. (1977) without appeal to unrealistically large sinking rates.
Indeed, sinking could be negligible.

I would like to close by listing some cautions. As remarked previously,
the reduction of biological dynamics to a term Ap in (1) is not correct.
However, inclusion of more realistic biology such as a grazing threshold
should not significantly alter my principal result, namely the explanation for
a phytoplankton maximum below compensation depth. Of greater concern are the
arguments leading to (9). I have posed an extremely simple, heuristic
explanation for what is, I feel, the dominant new effect. More careful
derivation is possible and may already exist in the literature of chemical or
environmental engineering. Especially, my treatment of 7(z) is haphazard.
I suppose, effectively, that whenever organisms arrive at a level z, net
growth or decay is instantaneously equal to the mean X(z). However, the same
fluid displacement which carries phytoplankton will also carry grazing
zooplankton and dissolved nutrients, inducing perturbations in ;k, say
which will bear some correlation with p'. Only light availability would
appear to behave in the manner that I have assumed. (Note: vertical
displacements induced by surface gravity waves do not contribute in (x)).

1
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Perhaps these consideratios, as well as possible biological hysterisis, can be
incorporated by replacing) in (9) with some .• Efforts to assign U*
in (12) will be less confident than the prescript on (9) for W*. However, I
hasten to point out that the dynamical basis for Klk or Kt is even less
well established. I would hope that a practical mix of theory and empiricism
will lead to refinement of the virtual velocity terms. My point In this note
is to demonstrate the existence and apparent importance of these terms. A
more careful derivation may be supplied by Prof. J. Keller in these GFD notes.
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THE UTILITY OF MULTIPLE TRACER DISTRIBUTIONS
IN CALIBRATING OCEAN THERMOCLINE MODELS

Wallace S. Broecker

INTRODUCT ION

Until valid ocean general circulation models are constructed, the uptake of
fossil fuel CO2 by the sea will have to be determined from reservoir models
calibrated through use of the distribution of natural radioisotopes and trans-
ient tracers. Two questions arise in connection with this interim strategy.
First, how sensitive is the uptake of fossil fuel CO2 to the basic design of
these models? Second, can the design be improved by simultaneously fitting the
distributions of several tracers? These questions are explored here comparing
the results for a variety of thermocline models. We select the theromocline
for this study because it currently holds most of the fossil fuel CO2 con-
tained by the sea and because we have multiple tracer data for this region of
the sea.

The tracers whose distribution we can use as calibrations for our models
are 3H, 3He, 14C, 8 5Kr, and the ireons. The temporal and geographic
input functions of these tracers differ considerably from one another. So
also do their geochemistries in the sea. Tritium for example is carried to
the sea surface by rain and vapor exchange shortly after it reaches the tropo-
sphere. Thus the delivery of this isotope was strongly influenced by the
locations of the bomb tests in which major amounts of tritium were produced and
by characteristics of the atmospheric dispersal system. Once in the sea the
tritium remains there. By contrast the 8Kr and the freons created by man
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will perpetually remain mainly in the atmosphere. Thus these gases have become
nearly uniformly dispersed throughout the atmosphere and their concentrations
in the sea are geographically uniform (except for differences related to the
temperature dependence of their solubilities). Because of the large ratio of
HCO3 + + CO3 ' to C02 in the sea the 

14 C produced during bomb tests

will ultimately be transferred largely to the sea. However, because of the
large concentration of inorganic carbon in the sea the 14 C/C ratio in surface
water has not as yet achieved equilibrium with the atmosphere. For this reason
the transfer of 14c02 across the air-sea interface constitutes a major
resistance to its ocean uptake. This is not the case for 8 5Kr and the
freons; surface waters are at equilibrium with the atmosphere. 3He is pro-
duced by the decay of 3H within the sea and is ultimately irreversibly lost

, from the sea to the air. Thus its distribution within the sea is quite
distinct from those of the other tracers.

CO2 whose distribution in the sea we wish to calculate differs from the
other tracers in two important regards. First its input extends over a much
longer period of time . Second its uptake characteristics lie geometrically
between those of 14 C02 and those of 8 Kr and the freons. The equilibra-
tion time between surface water and the atmosphere for CO2 (~ 1 year) is
longer than that for 8 5Kr and the freons (~ 1 month) and shorter than that
for 14 CO2 (,-10 years). The equilibration time for CO2 and the isotopic
equilibration time for 14 002 differ because chemical equilibration involves
the adjustment of the CO3 - ion content of the water while the isotopic
equilibration involves all the carbon in the water. Carbonate ions make up
about 10 percent of the carbon dissolved in surface sea water.

The characteristic of the thermocline which makes these differences among
tracers potentially important is that ventilation is thought to occur mainly
along horizons of constant potential density (i.e., isopycnal surfaces). As
these horizons reach the surface during only the peak winter period, the input
of the tracers to these outcrop regions will differ from one another. 8 5Kr
and the freons should achieve equilibrium in surface water even during the
winter exposure of waters at the isopycnal outcrops. On the other hand, little
atmospheric tritium or 14C will enter the outcrop region during this brief
exposure. Finally, any tritium derived 3He brought to the surface during
the period of outcropping will be lost to the atmosphere. The situation for
CO2 lies between those for 14 C and 8 5Kr.

Thermocline Models

For our sensitivity study we adopt a two dimensional thermocline with out-
cropping isopycnal horizons. We consider a single hemispheric sector of the
ocean (equator to 540 N). We depict this sector through a 15 box model. It

consists of three levels of the thermocline (upper, middle and lower). Each is
subdivided into three well mixed interior reservoirs and one outcrop reservoir.
The latitude boundaries and relative volumes for these 15 reservoirs are shown
in Figure I.

Our strategy then is to see whether the distribution of these tracers in

the thermocline places any limits on the flow paths of water among these boxes.
We do this by selecting a variety of advective flow paths. For each we select
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absolute flow rates (and where necessary diffusive mixing rates) which produce
the same tritium distribution. This distribution is approximately that ob-
served during the GEOSECS program. We then feed the other tracers into the
models and compare the model to model and model to observed distributions
generated in this way.

For this preliminary study we select the North Atlantic. The main reason
for this choice is that the tracer data base is superior for this region of The
ocean. Our comparisons concentrate on the region 15ON to 45ON.

Model #1 is termed the "sidewelling" case. In this model the three levels
of tbP thprmocline are ventilated from their respective outcrops. Water passes
through the thermocline and exits into the equatorial zone whFrP it upwells to
the surface. This upwelled water flows back along the surface and eventually
reenters the interior of the thermocline (via the outcrops). The water cycle
is closed except for the water flowing along the surface to the north beyond
the boundary of the model. An equivalent amount of water is fed into the base
of the equatorial thermocline. This upwelling water is assumed to be tracer
free. The calculations are made numerically. The tritium is added to the
surface of the model in accordance with its input time history.

Model #2 is termed the "upwelling" case. Again each of the layers of the
thermocline is ventilated from its respective outcrop. The water is returned
to the surface by upwelling in the 150N to 450N latitude belt. Upon reach-
ing the surface the water flows back to the outcrop region. Through the proper
choice of the advective fluxes (and of the rates of horizontal interchange
between adjacent 15ON - 30ON and 300 to 450N reservoirs) it is possible
to achieve a tritium distribution in the 15ON to 450N region identical to
that for model #1. The absolute tritium input rate for model #2 is 1.16 that
for model #1.

Model #3 is termed the "backwelllng" case. Like the first two models vent-
ilation is entirely from the outcrops of the respective thermocline layers.
However, in this case the water also returns to the surface through these out-
crops. Hence all cross isopycnal transport occurs at the surface. Advective
flow along the surface from the equatorial zone to high latitudes Is also in-
cluded. Again by suitable choice of the magnitudes of these fluxes a tritium
dip---ibution identical to that for the first two models can be achieved. In
this case the absolute tritium input rate is 0.69 times that for model #i.

Model #4 is termed the "downwelling" case. The thermocline between 150
and 450N is ventilated from above rather than from the outcrops. Again by
suitable choice of absolute fluxes we can achieve a tritium distribution
identical to that for the first three models. In this case the absolute
tritium flux is 0.94 times that for model #1.
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PARTICLE DISPERSION IN THE WESTERN NORTH ATLANTIC

James F. Price

Particle dispersion in the western North Atlantic thermocline is examined
using an extensive SOFAR float data set. The float observations were made as
part of the 1978 Local Dynamics Experiment (LDE) centered on 31N, 70W, a high

eddy energy region near the southern edge of the Gulf Stream recirculation.

Dispersion is partitioned into an advective component, due to the mean
transport velocity which was westward at about 0.015 m s- t, and an eddy
component (everything else) due mainly to mesoscale motions. For short times
after launch, ", 3 days, the root mean square (rms) eddy dispersion has a

clearly defined time +T growth proportional to the rms eddy velocity. For

long times after launch, 20 days, rms eddy dispersion grows roughly as

time +1/2. Hence, the long-tiAe eddy dispersion may be described by 
a diffusivity,

K= U ' dispersion, where (KIIK 22) are the (zonal meridional)icomponents. In the

mid-thermocline, 700 m, (Kll,K2 2) = (8 + 2, 5 + 2) x 3 m2 s -1. n the deep-
thermocline, 1300 m, (KII,K22) 

= (1.5 + 1, 1.5 + 0.5) x 10 mn s-.

There are two notable qualitative results in this. First, for times of up

to several hundred days, K is sufficiently large that the total particle
dispersion is dominated by eddy dispersion, rather than advection by the mean
velocity. Secondly, these estimates together with those of Freeland et al.
(1975), reveal a substantial geographic variation of K. K increases toward
the surface and toward the Gulf Stream. Within this very limited sample, it
appears that K is proportional to the eddy velocity variance, where the
constant of proportionality (integral time scale) is about 8 days.
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AN IDEALIZED MODEL OF STIRRING

Hassan Aref

The kinematics of an advected particle reduces in the Lagrangian
representation to a dynamical system

= u(x,y,z,t),
= v(x,y,z,t), (1)

= w(x,y,z,t),

where u - (u,v,w) is a prescribed velocity field. For turbulent advection u,

v and w are given only probabilistically. Hence the results or "laws" one
obtains for advection by turbulent flow are statistical. For laminar flows

advection in 3D can in principle be chaotic even for steady flow. However, in
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most analyses the laminar flow is restricted further to be both steady and two-
dimensional (or axisymmetric). This renders the advection problem integrable
since path lines and streamlines (or Stokes' streamlines) now coincide. The
model proposed here breaks this standard mold by introducing a nonsteady poten-
tial flow to produce chaotic advected particle motion. This regime, where a
regular flow field produces highly irregular advectlon, appears to be new. It
is proposed to call it the regime of chaotic advection.

l The actual model considered is extremely simple: Take a circular tank of

radius a containing ideal (incompressible, inviscid) fluid constrained to

two-dimensional motion. Place within the tank an agitator modelled as a point
I vortex of strength V If the flow plane is identified with the complex

plane, and the positions of marker particle and agitator are denoted (t)
and z(t), respectively, the equation of motion being considered isI

2 ( - z)- 2 ( a -2/z,  (2)

Here an asterisk denotes complex conjugation. The first contribution on the
RHS of (2) comes from the agitator itself, the second from its image.

Eq. (2) is a Hamiltonian system which is in general nonautonomous since z
depends on time (the "stirring protocol"). For the special case

+b when nT < t (n + 1/2)T

z(t) -b when (n + 1/2)T < t < (n+l)T

for n = 0, + 1, +2,... it turns out that the particle trajectories consist of
circular arcs and Eqn. (2) can be explicitly integrated over a time interval

T/2. Hence, for this alternating stirrer protocol Eqn. (2) can be reduced to
an area preserving map which may then be iterated at high precision.

I Numerical experiments with this map for a= 1, V = 2 r and b 1 1/2, show
that chaos sets in when T = 0.1 and apparently persists for larger T. Thus a

slow shifting back and forth of the agitator seems to lead to more efficient
stirring than a rapid shifting! For T in the quasi-integrable regime
(T < .05 for b = 1/2) a blob of markers is forever trapped between the KAM
tori (streamlines) within which it is found initially. However, for T well
into the chaotic regime the blob is spread throughout the tank (within at most
ten stirring periods) and very efficient stirring is achieved.

This simple model highlights many issues in the topic of advection. For
example, it shows that an advected marker distribution can be extremely compli-
cated even if the flow field is very simple. The marker distribution in the
model is statistical in nature (when the stirring is operating in the chaoticj regime) but the precise form of this statistics seems elusive.

I
I
I
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THE STREAKINESS OF TRACERS

Thomas Keffer

A model to study the spreading behavior of a spot of tracer in an
individual realization is developed. The barotropic vorticity equation
(with f ) is integrated forward in time to steady state using a doubly
periodic spectral code to create a turbulent velocity field. A Gaussian spot
of tracer is then introduced and the tracer conservation equation is integrated
in time using the previously generated velocity field.

The tracer is found to be teased out into "streaks" of width (n/y)l/2

where T, is the sub-gridscale diffusivity and Y is the rms rate of strain.
The area inside a contour is found to increase linearly for a short 0(1h)
time, then exponentially at a rate less than exp(yt) until a time tfree,
then finally, linearly again. The limited spatial and temporal scales of the
eddies is found to be important in limiting growth of a contour. A simple
model of the growth is offered.

MODELING THE ADVECTIVE AND TURBULENT TRANSPORT OF PLANKTON

J. S. Wroblewski

Plankton models must incorporate time-dependent flow fields to properly
resolve the advective and eddy transports which shape the distribution of many
biological and chemical variables in the sea. Models which exclusively use
coefficients of eddy diffusivity to parameterize mixing processes are unable
to achieve the same detail as those models which properly resolve the eddy
transport of a passive scalar, P (e.g. dissolved nutrients, phytoplankton,
nonmigrating zooplankton, etc.). Time-dependent advection gives rise to an
apparent diffusivity K* which is a property of the flow and the gradient of
the scalar. K* is not connected with the numerical scheme chosen for the
model, i.e., it is not numerical diffusion.

Turbulent fluctuations in the flow and quick local growth of P can result
in transport of P against its gradient, sharpening spatial biological features.
To obtain the same effect without including advection in the model, one would
have to utilize a negative, explicit diffusivity! However, this is not sug-
gested. Rather one should use a realistic flow field when simulating structure
in the distribution of P which is primarily governed by advection. Diffusive
terms with constant coefficients of eddy diffusivity can then be reserved

solely to parameterize subgrid scale mixing of the variable, P.

With the development of "realistic" time-dependent circulation models,
biological oceanographers can begin to test hypotheses by simulation modeling.
Biological processes in the sea are nonlinear and occur on short time scales
(hours). The magnitude of biological rates are often coupled to the time
history of vertical transport. For example, phytoplankton growth is often
light, limited and governed by vertical mixing. We require understanding of
the fluid motion to make progress on many biological problems. In particular,
biological modelers require realistic mixed layer models to simulate biological
structure in the vertical.
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EUPHAUSIID INVASION/DISPERSAL IN GULF STREAM COLD-CORE RINGS

Peter H. Wiebe

Invasion/dispersal patterns in the distribution and abundance of euphausiid

species in four young- to middle-aged Gulf Stream cold-core rings suggest that
several different physical exchange mechanisms are operating. The most import-
ant of these appear to be horizontal mixing in the mixed layer and exchange
due to movement into or out of the trapped region at depth. A zone of minimum

exchange is evident between 150 and 400 meters.

In addition to physical transport into or out of a ring, the distribution
of a species is a result of its behavioral and physiological response to the
new environment, and the biological effects of predation and competition with
other species. These aspects of euphasiid biology are less well understood,
but changes in ve tical distribution and abundance of warm water species invad-
ing the ring environs suggest that only a few species such as Stylocheiron
carinatum are able to penetrate and take advantage of the changing ring condi-
tions in young-to middle-aged rings (2 to 8 months). Other near surface warm
water species penetrate at slower rates regardless of whether they are
vertical migrators (Euphausia brevis, E. hemigibba, E. tenera, Thysanopoda
aegualis) or non-migrators (S. suhmii, S. abbreviatum). Deeper living species

such as S. affine, S. elongatum, Nematoscelis microps. and N. tenella show

minimal penetration of ring core waters in these four rings.

Cold-water species expatriated in cold-core rings also show a varied
response to ring decay wit' gome species disappearing rapidly -- 3 to 4 months

(ThYsanoessa longicaudata) -- and others persisting for substantial periods --
I/2 to 1 year (N. megalops, E. krohnii). Distribution of the latter two

species indicate dispersal out beyond the ring core at the surface in the case

of E. krohnii and at depths of 400 to 1000 meters in the case of N. megalops.
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MESOSCALE PHYTOPLANKTON DISTRIBUTIONS

Kenneth L. Denman

Phytoplankton use the sun's energy to form organic molecules via the
photosynthetic process making them the base of the marine food chain. Their

distributions in space and time are of importance in determining areas of high
potential productivity in the marine food chain. Physically, phytoplankton

behave as a passive tracer of the fluid flow, but they are not conservative:
they grow, die and are eaten. The time scale for healthy photoplankton to
double their weight or biomass by growth is 1-3 days, less than the time scale
for enstrophy cascade in oceanic mesoscale eddies ( 1- 0 days). Hence,
phytoplankton growth should affect their distribution in space, rather than
total control by the unsteady ocean currents.

Near surface phytoplankton abundance can now be estimated from the
satellite-borne Coastal Zone Color Scanner (CZCS), providing us with a more

complete description of their horizontal distributions. Recent investigations
have determined a variance spectrum for phytoplankton abundance with a wave
number dependence of k- 3 or steeper over a wave number (actually inverse

wave length) range of 1-100 km (Gower, Denman and Holyer, 1980; Austin, 1981).
Only in one case has the simultaneous spectrum for temperature been obtained

(Olsson, pers. comm.), and the spectra are similar. We have derived structure
functions from multiple ship surveys in a coastal region; they imply a spectral

power law behavior of k- I for phytoplankton abundance, and k-  for tempera-

ture, salinity and dynamic height.

Numerical models of 2-D turbulence give patterns for a conserved passive

scalar qualitatively similar to the CZCS phytoplankton images. One example
(Holloway, pers. comm.) yields a kinetic energy spectral power law of k

-5

and a corresponding scalar tracer variance spectrum of k -3 . We plan to

carry out model experiments with a growing scalar tracer and possibly with two

coupled tracers representing phytoplankton and a limited nutrient supply,

thereby provided a growth rate variable in both space and time.
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3 ADVECTION MODELLING OF VERTICALLY MIGRATING SHRIMP LARVAE

John A. Church

The role of larval advection in determining the complex, large-scale
patterns of immigration of penaeid postlarvae in the Gulf of Carpentaria has
been found by modelling the interaction between diurnal vertical migration of
larvae with wind-forced and tidal currents. Eight vertical migration schemes
were modelled which varied both the timing of migration and the position of
the larvae in the water column. Both two-dimensional and three-dimensional
models of the currents were coupled to the migratory larvae. When the larvae
can migrate vertically with a diurnal period, their horizontal advection is
enhanced. The largest horizontal advection distances occur when the larvae
move diurnally into the bottom boundary layer. Advection distances up to
165 km are possible during the relatively short planktonic larval period.
This distance corresponds to, and may determine, the offshore extent of the
adult distribution. The onshore advection pattern of larvae varies in both
space and time (on a seasonal scale) and is consistent with the observed
spatial and temporal recruitment patterns. During the period of highest
reproductive activity (March) In the area of the largest fishery, the
advection of larvae is offshore and little recruitmenc of postlarvae to the
nursery grounds Is accomplished. Six months later, during the next period of
reproductive activity (October), when the number of spawning female prawns is
much lower, the phase of the tidal currents, relative to the day-night cycle,
has progressed 1800 and the larvae are moved onshore allowing postlarvae
access to their estuarine nursery grounds several months prior to the main
fishing season (March).

RADIOCARBON AS A TRACER OF OCEAN VARIABILITY

Ellen M. Druffel

Corals living in the surface layer of the ocean record within their annual
density bands a variety of unaltered isotopic records. Among these are past
radiocarbon levels reflective of the 14 C/IzC ratio in the sea water, and
180/160 ratios which record temperature at the time of skeletal formation.

These records have been obtained for several-hundred year old coral series
from temperate and tropical regions of the Pacific and Atlantic Oceans. These
results are surveyed and implications of variability of the air-sea gas

* exchange rate and of ocean circulation are discussed. In particular, isotopic
records of corals in the Gulf Stream show that the annual mean water tempera-
ture was IOC cooler around A.D. 1700. Coincident with this was a rise in
the 14C/12 ratio during the Maunder minimum, a period of documented low
solar activity. There also appears to be an apparent climatological control
on the exchange of 14C02 between air and ocean on decade timescales In the
North Atlantic. This correlates with the variation in estimated water mass
renewal rates for this area as calculated by Jenkins (1982).
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WESTERN NORTH ATLANTIC STRUCTURE AND
VARIABILITY INFERRED FROM SOFAR FLOATS

Stephen C. Riser

Frum SOFAR floats set at several depths in the western North Atlantic,
it is shown that the Lagrangian motions of trajectors varies markedly over
regions as small as a few degrees on a side. Kinetic energy increases to the
north and west at both 700 m and 2000 m; at both levels the region in the
vicinity of 280N, 70oW, the MODE region, appears to be a local minimum of
kinetic energy. At very low frequencies the trajectories indicate that zonal
motions are more energetic than meridional ones on the thermocline and at
depth over a flat bottom.

Three regions of the North Atlantic are examined. North of 320N and
west of 60°W, there is evidence of westward recirculation in the
thermocline. South of this recirculation regime there is evidence that
individual fluid parcels undergo large rms displacements but small net
displacements over times of years. South and east of this regime, there is
evidence of an eastward mean flow in the thermocline extending possibly as far
east as the Mid-Atlantic Ridge.

In deeper water, at 2000 m, trajectories appear to be influencedby bottom
topography, though over a flat bottom the tracks are similar to their thermo-
cline counterparts.
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LECTURES OF FELLOWSI
WAKES AND MEAN FLOWS OF LOW-FREQUENCY INTERNAL-WAVE PACKETS

Dave Broutman

INTRODUCTION

A central theme of Dr. Andrews' lectures is the role of wave-
transience in affecting mean flows and mean profiles of temperature
and tracers. The examples covered by Dr. Andrews found application
in the stratosphere and included the sudden stratospheric warming,
where growing planetary waves modify the temperature distribution by
as much as 40 0 C and decelerate upper level winds.

Transience is a marked feature of energetic, near-inertial
oscillations in the ocean. Although it is unlikely that they will
increase ocean temperatures by 400C, these oscillations could be very
effective at inducing mean flows. If, as for high-frequency, plane,
internal gravity waves,

-L J"" - _ (1)
i~

where u and u are the Eulerian and Lagrangian horizontal mean velo-
cities, respectively, E is the energy density (see equation (16) and
below), and c is horizontal (intrinsic) phase velocity, then for
fixed horizontal wavelength, the generation of mean velocities would
be heavily dominated by low-frequency waves: in addition to the
phase velocity appearing in the denominator in (1), energy spectra
typically fall off as the inverse square of the frequency and even
fister in the upper ocean and near the inertial and tidal bands. A
rough calculation using (1) and the observation that low-frequency
waves are marginally stable (i.e. have a minimum Richardson number
approaching unity), gives mean-flow magnitudes of nearly half the
orbital velocity of the waves.

When Coriolis terms are important, however, mean flows can
develop with an entirely different character. Here mean-flow equa-
tions are derived for low-frequency internal-wave packets. Of the

_Lcases considered, only when rotation is ignored does "u or u equal
E/c identically, and only when horizontal dependence is ignored does
an inertial wave appear in the wake of the packet, as predicted by
Hasselmann (1970). These calculations supplement the related work of
Andrews (1980), Bretherton (1969), Grimshaw (1975), and Hasselmann
(1970).



I - l ,f•  
--

It is assumed that the Vais6la frcquency, N, is constant and
that the background (01)) mean flow is zero. For the upper thermo-
cline, where low-frequency packets are :,n.st energetic and identifi-
able, these are poor a.-sumptiors, but th-y h1ep to isolate the depen-
dence of mean-flow evolutiorn or. wave-frequency. The calculations car,
probaoly be extenrei tr, inr.lude ,a, iationrs in tie mediuln through a
WKB analysis wlthhut 'lite ir , thie co.ncluslor. :,btained below. We
also ignore oceanr bour iaric:f, '.j, ,-. is rasor.auie frt the scales to
be considered: vertireal c. !iner.sons of a few hur.red meters,
implying horizor.tal w;iv-er ,th-, r,".-h y '5-2) cilometers, depending
on frequency. Packets of t nez,.-oa--'. ioriirate sectra of vertical

shear and sho w up .iewer'Ly _p .Icei' 1 ,' .

The equatior.s ti, be i"-olvej -re

I- -

S/ -(2b)

The fluid is nrtn: j si p'.i ve, EWu3s r 2 , a n' inconpressible,
2.I (O,O,f) , where t' is tie rirtiai frequency, assumed constant,
and u = (u,v,w).

MEAN FLOWS

As wave! aropagate thr a fluid, it is wel known that they
set up stresses that can acocierate inear. m,-tiors. There are many
examples with physical irfterpretat,.or- in the *Lterature. Mathemati-
cally, a mean flow arises because a sinusoid is generally not an
exact solution to the equations of motion. If sinusoidal motion is
assumed, the nonlinear terms try to generate harmonics and mean quan-
tities. Even in the qpeiai cases where sinusoidal motion is an
exact solution (e.g. plane internal-inertial gravity waves in a uni-
form, nondissipative, Baussiresq fluid) strictly sinusoidal motion
may not be consistent with the condit.ion of no m:tior initially. For
instance, a wave train with a s.lowLy grcwing leading edge, of the
type described in a lerture o f Dr. Andrews, indijes mean as well as
orbital motion. When the wav-train amplitude levels off, he hor-
izontal velocity is u = si(Kx-, ;, where u is an O(FI) con-
stant. This is still ar exact ,l under the assumptions men-
tioned above provided r-ria, c is t'i rppler,'±ted frequency.

When rotatinn (and dissipationr car be igrored, net accelera-
tions produced by tho leidir, edge of a wave pa-ket are cancelled by
decelerations in tne oal i g dge. The mean fl(,w returns to zero
after the packet passes, aithoigh a net displacement of the fluid
occurs if the Lagrangian--mear. flow is norzero.

When rotation is important, the trailing elge may not decelerate
the fluid back to zero velc.city bo'oause the mean. notion, now affected
by the Coriolis forne, changes direction Jurinj the passage of the
packet. The same forces that set up the motion, therefore, may no
longer stop it. Instead. the system is left rirging at inertial
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frequency after the packet propagates away. This is illustrated in
the following example.

Solutions to (2) are sought of the form

I The buoyancy parameter is z gel/p 0  and a factor of 1/ A is
included in the pressure variable or simplicity in notation. The
primed quantities are O(E) and behave like exp(K'x -it), where
K = (k,O,m). The barred quantities are obtained by an Eulerian aver-
age over phase and are O(e_)

The 0(FE) equations,
t -fiv 0J. (4)

I'I ~ 'ij C
tlt aZ " l ( : 0(5)

Wt .(6)

A/  (7)
I , (8)

1Q Vy# ? ""2 -'

yield the standard linear-theory results: the dispersion relation-
ship

l - -. (9)

and the relationships

L 44:e/,wO 2 (10)

The O(E2) equations describe the evolution of means and second
harmonics. The later component is eliminated by averaging, leaving

a v, (12,,), :yrT)r <

- -. ,('~ x >~ (----,) (13)

(15)

IThese equations are written in terms of the stretched variablesXhs quat in x, Ta VAbtes

X/A&<<T / «1) which vary by an 0(0) amount over the scales1 I =  ' th ae

I
p , I - I I I • - I I iiir . . .. I , .iII I
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of the packet. The boundary condition is that all quantities vanish
as Z-0-OO (envisioning a packet with downward group velocity). The
O(E) equations have been used to eliminate products of quantities on
the right-hand-side of (1)-(15) which are out of phase.

CASE (1) z ) / ; c j / ,

By ignoring variations in X and Y, the continuity equation and
boundary condition force i to be zero everywhere. The buoyancy equa-
tion then gives 07= o, leaving the pressure gradient term to balance
the Reynolds stresses in the vertical momentum equation.

A high frequency approximation, 43/f >> 1, reduces the equation
for the x-component of the pseudomomentu, 1 to

- - ,(16)

where P6 Z'E/c, E (u + . + w-,2 + 0_-21N2)12, and c = /k.
The horilontal momentum equations then become

- I /(e~ (17)

/ V, ZaI- (18)

At this stage we assume that the Coriolis term and the accelera-
tion term are the same order, i.e. that f -p - 0(1), where Zp is
the time scale of the packet. (Since Z >> 1/ 14t for scale separa-
tion to hold, this assumption includes the high frequency approxima-
tion leading to (16)). The case of strong rotation, fI >> 1 is
considered in the next section. P

Defining 9 -u + iv, (17) and (18) combine to become

lel -O :/',r (19)

which has the solution -/ (0-- t,/Vt7 '
A? . (20)

The second term arises when f is nonzero and represents an inertial
wave left in the wake of the packet. Hasselmann (1970) obtains a
similar solution for a random field of surface waves or internal
waves in shallow water. Related behavior illustrating that Rossby-
wave packets leave lower-frequency HIssby waves in their wake is
shown in Rhines and Holland (1979).

It therefore appears that transient waves need not induce tran-
sient mean flows, even in a nondissipative fluid. This conclusion
follows more directly when the equations are rewritten in
Lagrangian-mean form:
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(21)

V t?4? - (22)

i i" r i, ,t)X,.
(23)

4/~~ k 24)

4 t/
i ,,"U 14 .(25)

where the Lagrangian mean of a quantity, g,

- (26)

is an average taken over all particles whose mean position is x.
(x,t) = (.,$,P) is the particle displacement, defined such that

J ixY = 0 (Andrews & McIntyre (1978)), and the pseudomomentum vec-
tor, p, has components (P ,0 ,p) Dependence on X and Y in (21)-(25)
has been included for later re+erence. Ignoring these dependences
for now, the X-momentum equation can be rewritten as

' /,t'iZ -], )r -/;": o(27)

which in turn can be rewritten as -

(Andrews & McIntyre (1978)). -L signifies the rate of change moving

with the Lagrangian-mean flow:

f U ,(28)

If the Coriolis force leads to a net change in y during the passage

of the packet, UL must remain nonzero after the packet propagates

away.I
CASEC(2)

The solution given in (20) is derived assuming that the Coriolis
terms are small but nonzero. This requires

/Lrz 00)(29)i~ ~~7 '/ "I",IL r" <,
where we identify -' r,, - with the time scale of the packet. Let

C t,-. XrvLA-) with rr measuring the number of wave periods required for
the wave packet to reach maximum amplitude at a fixed location. Then
f - 0(0) translates to J - O(27Wrtf). If -1L = 4. say, then "
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must be in the range of 25f for the Coriolis and acceleration terms
to be of the same order. Since 25f corresponds to a wave period of
less than one hour at midlatitudes, this division not only lies well
above f, but also above the frequency of the semidiurnal tide and
tidal harmonic at six-hour period. The assumption f Z,, - 0(I)
therefore excludes what is by far the most energetic parts of the
oceanic internal-wave spectrum. The amount that is excluded depends
of course on -r , but the point is that it is 27, .f/t& and not f/4-
that measures the ratio of the Coriolis to veceleration terms in the

mean equations.

The approximate balance to lowest order is now between the
Coriolis term and the radiation stresses, so that

- (30)V 7 /,r
- , A (31)

Because the mean motion is reduced to an 0(,a) quantity, the Stokes

drift appears at the same order

(32)- .

More interestingly, v and u return to zero after the packet pro-
pagates away. If the mean velocities are expanded in powers of/ ,1
inertial motion in the wake still does not appear, for at all higher

orders vL and u can be related to higher-order derivatives of

with respect to T. 1

To see what has happened to the inertial motion, we can derive

an exact solution for i L *uL + ivL analogous to (20) for i except
that when written in terms of Lagrangian-mean variables, the solution
is valid for all frequencies: no high-frequency approximation is

necessary to replace the right hand sides of (21) and (23) with 61T
and PT respectively. (Psedomomentum is not exactly conserved for

local zed wave packets since mean quantities depend on position; how-

ever, corrections do not appear for this problem until O( ').) We
can thus write

-L r r) A
0(7J (33)

Since by assumption f 2"'>> 1, the phase of the exponential function
in the integrand of (33) varies rapidly. An asymptotic expansion can
then be found through an integration by parts. Integrating N times

leaves

0~'(34)
r

7 'J ,

%A .i '"<,
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The last integral represents the inertial motion left in the wa ce of
the packet. It does not appear in the asymptotic expansion because
it is exponentially small as / -4 0. (The Riemann-Lesbegue lemma
limits the last term in (34) to an o(A. -N) quantity, but using a

stationary phase calculation and noticing that the phase function in
the integral has no stationary points, the integral can be shown to
be exponentially small as vanishes (Lighthill, 1978).)

CASE (3) , X -Yy- c( ); /-? :
Low-frequency internal-wave packets have horizontal scales that

are much greater than their vertical scales; however unlike Hassel-
mann (1970), we consider horizontal variations because the ratio of
the Reynolds stress terms in the x-momentum equation, for example, is

"7t 42(35)

where 6 Z and A X are the vertical and horizontal scales of the
packet. The ratio thus scales as the number of horizontal
wavelengths to the number of vertical wavelengths, not as the ratio
of absolute packet dimensions or wavenumbers.

Allowing for the packet to produce mean horizontal pressure gra-
dients and allowing for all the terms in the continuity equation
leaves the system of equations given in (21)-(25). We write

V = V -- -/ /4 V (  (36)

and similarly for all other mean quantities, and attempt an expansion
which balances terms geostrophically and hydrostatically at lowest
order:

0V"  /9A e ) (37)

S ,-(38)

6. f IP e O (39)
. 1-. 0 )  -- 0(40)

A sream function,1(0), can be defined at this order, related to

p by

-Z (341)

1,1where A~ :9Y)(, A~~/ "d~ v~t
The evolution of the 001) quantities is obtained from the 0()

equations:

1

1l
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Ur XV,' f Ar (42)

to ) i a,,,V- (43)

t.j#, V/y",, /i!4  C)(6

These c n be manipulated, using (41i), to obtain Poisson's equationfor er(V A 2 i (45)

The formal solution to (47) can be written in terms of a Greer's

function or derived using a three-dimensional Fourier transform.

Suppos we w choose a Gaussian packet envelope:

Chx) 0

where C (C , , CZ) is the group velocity. Symmetry considera-
tions 1~ad to g g

Pxta)- () C (i49)

so VL is zero along the Y-centerline of the packet, where the wave-

amplitude reaches a maximum.

In the far-field, f(0) and p(0) decay as 1/r 2 multiplied by

some angular dependence. (An electromagnetic analogy is the poten-
tial due to a dipole source.) Consequently, no inertial wake results.

Viewed another way, (47) becomes Laplace's equation as T-Doo , X
fixed, which, because of the boundary conditions, cannot support
motion.

As in Case 2(2) the inertial motion does not appear at higher
order. The 0(/2) equations give

to .. 3 (50)

A, AP I&Z //fit

which also reduces to Lapkace's equation after the packet propagates

away. Similarly, the 05,4.4) equations lead to

-1 ap f > 2 P rz =  - to) fZ) (51)

Since the structure of the equation at all higher orders is the same
as (51), the expansion yields only decaying motion in the packet
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wake.

Again as in Case (2), the inertial motion may result from an
expression which is exponentially small as A -- 0. There is at
least one other possibility though: the inertial wake may be limited
to packets of infinite horizontal extent, i.e. the limit of
Q/ C X ,'3/i3Y approaching zero may be a singular one. The idea

is that although the horizontal pressure gradients build slowly in a
long but finite packet, they can eventually reach an 0(1) magnitude.
The dynamics change when horizontal pressure gradients are important
and inertial oscillations may disappear.

An exact solution to (21)-(;25) would reveal whether the limit
')'X,?-/' -- 0 is singular. A suggestion made by Glenn Flierl is

to try a sinusoidal packet shape

j 454/A (52)

for -- V <A < <( and p1  0 otherwise. This allows solutions to be
obtained by assuming behavior of the form Acos A+ Bsin. for each of
the mean variables. To meet the initial condition, solutions to the

homogeneous equations are also needed. The effect of discontinuities
in PlTT at A = -7,,r requires assessment.

Another possibility is to ignore Z dependence. The equations
then reduce to

- =  (53)

Sr "Y f --

which can be combined to give the "wake-less" equation

14. A (56)

however, if X and Y variations are ignored from the outset, so the0%

forcing, p , builds in time everywhere by the same amount, then the
governing 4 uation becomes the "wake-full" equation (19). This

model, although somewhat contrived, is an example illustrating the
singular limit associated with the neglect of horizontal dependences.

NONUNIFORM MEDIA AND CHANGES IN PACKET AMPLITUDE

Grimshaw (1975) derives a general system of mean flow equations
that allows for variations in the Vaisala frequency and for back-
ground shears. Even in a uniform medium, though, the wave-induced
mean flow will be affected by changes in packet amplitude resulting
from dispersion, especially since the propagation is three-
dimensional and especially when the waves are highly transient or

i1
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localized and therefore involve a broad (or at least non-rarrow)
range of frequencies and wavenumbers. This is often the case in the
upper ocean, where packets with as few as three or four crests are
observed. A stationary phase calculation describes the attenuation

of energy in a uniform medium, but this result can also be obtained
from the ray equations. The equation for action density along the
ray (in one dimension for now) is

where Af (x,t) :J2 (k,xt) is the dispersion relation and

d/dt *. C 2/ Since dk/dt = 0

A -- "Ox C' (58)

Substituting (58) into (57) and using] - 0, gives the stationary
phase result that the action density deca§ as l/t as t - "

It may seem surprising that although dispersion results from a
spread in frequencies or wavenumbers, bandwidth information does not
enter directly into the equation for action density, as it does in
the equation for action spectral density, -?, in (k,x,t) space:

Here spectral content appears through the term ?n/ k; recall, how-
ever, that the bandwidth does not enter in the stationary phase cal-

culation either, except at higher order when developed as an asymp-
totic expansion. Writing

1* (60)

where fk(k) = kx/t - J(k) , we transform variables, using

-7(%) (62)

(Note that using L'Hopital's rule,

e '( 0) (63)

providd_11 l(k O0 ) is nonzero.) Equation (60) then becomes

p r o v i d e)
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k is the stationary point, satisfying J%(k 0 ) 0, and a prime in
(64 ) denotes differentiation with respect to s. The bandwidth infor-
mation in G'(O), G"(0)... appears only as a correction to the
lowest-order solution.

The advantage of the ray equation (57) over the method of sta-
tionary phase is that it is easily extended to nonuniform media.
Complications arise because in general k is not known analytically
and because in three dimensions, nine equations are required:

~7~2 VICSA& K - (65)

Still the system of equations can be integrated numerically. As an
approximation, it is probably justified to ignore horizontal varia-
tions in the Vaisala frequency and shear, so that the horizontal
wavenumbers are conserved, but the point here is that for localized
packets, dispersion due to a spread in horizontal wavenunbers should
not be dismissed as unimportant. Its affect on packet amplitudes may
match that produced by refraction.

CONCLUSION

The character of the mean flow induced by an internal-wave
packet is sensitive to the frequency of the waves and the dimensions
of the packet.

When horizontal variations are neglected, high frequency waves
-Linduce a mean flow given by u = E/c, unless rotation is included.

Then u is given by (20) and an inertial wave oscillates in the wake
of the packet. As the wave-frequency decreases toward f, the mean
flow adjusts so as to move perpendicular to K at lowest order; more-

over, in contrast to the high-frequency case, u vanishes whenever
the packet amplitude levels off (see (29) and (30)).

When horizontal dependences are included, the lowest-order
mean-flow equations lead to Poisson's equation for the pressure or
stream function regardless of wave frequency. Motions induced by low
frequency packets balance hydrostatically and geostrophically. A
question suggested by these calculations is whether the limit

-2/;Y ,2 /11 --, o is a singular one, and thus whether it is
realistic to ekpect wakes with inertial oscillations.

Table 1 provides a summary of results.
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I
Table 1. Properties of mean flows induced by nondissipative, plane,

internal-inertial gravity waves

(U = 0, N2 z constant, K = (k,O,m))

Mean-flow Equation Acetr ac y Inertial Wake

f 0 ZL E/c Exact to No

o v

ftp - 0() L E/c - Exact to Yes

- (I/h". //)Yr- T')W c/f'

fp>> 1 f = 0 ') Exponentially

small as

-L 2 A, 0 ,

u Af 1TT 0 /

-k 30 zr-?

f 0( p- ) 0 Ai e Exponentially

e z 60 small or

fr >> 1 nonex istent

A Geostrophic and hydrostatic at 014 ) .

f
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SECOND ORDER CONSTRAINTS ON THE AMPLITUDES OF
VERTICALLY PROPAGATING ROSSBY WAVES

Walter Robinson

1. Introduction

In a compressible atmosphere, in the absence of dissipation, the amplitudes
of vertically propagating waves grow roughly exponentially with height. If
this growth is unrestricted, the waves will propagate to some level at which
breaking occurs, or viscous dissipation becomes important. There they will
deposit their energy.

In the atmosphere, significant energy is contained within planetary scale
disturbances. Charney and Drazin (1961) point out that this energy can have
enormous influence if carried to high altitudes:

"The kinetic energy density in the lower troposphere Is of the order
of 103 ergs cm-3 . If this energy were to travel upward with little
attenuation and be converted into heat by friction or some other means at,
say, 100 km, where the density Is diminished by a factor of 10-6, it
would raise the air temperature to about lO0,000OK."

How does the atmosphere prevent the unrestricted vertical propagation and
growth of Rossby waves? The remainder of the introduction is a brief review
of Charney and Drazin's theory that the waves are evanescent in the mean zonal
flow. Part II treats the effects of wave, mean-flow interactions, with and
without dissipation. Finally, the possibility that instability of the dis-
turbed flow may provide the ultimate constraint on Rossby wave amplitudes is
mentioned.

Consider the quasi-geostrophic pseudo potential vorticity equation,
linearized on a mid latitude beta-plane (c.f. Holton 1975).

(~# i.~)~' +4~ G(1a)

where is the perturbation geostrophic stream function; q' is the pertur-

bation potential vorticity given by

.J . / _ _

- (lb)

is the mean flow zonal wind speed; #" 'is the meridional derivative of the
mean flow potential vorticity given by

and Z is a log-pressure coordinate given by

75
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In what follows, we take the scale height, H, the Brunt-Vaisala frequency,
N, and the zonal wind to be constant with height. The unperturbed density
profile is given by - 1HI (9° , - , .r

Because the largest scale disturbances are forced by topography and land-
sea thermal contrasts, only stationary disturbances are considered. Thus
has the form

I C (1d)

and rel,(1) becomes

(2)

If lengths are scaled by twice the deformation radius_21J//

times are scaled by the Intrinsic frequency of the wave

k

and heights are scaled by twice the scale height, then the non-dimensional
form of (2) is

Ile (3)I -Y-A' /3Ygr
where

CA_-

The solution of (3) is

IIwhere the "index of refraction", n, is given by

*(4)
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Thus Rossby.%waves can propagate vertically only through regions of suffl-

ciently large 19 umust be positive but lEss than a critical value. --

given (dimensionally) by

Y 'Y -X1

Charney and Drazin find that for an azimuthal wavenum'er 2 dMsturban-ce 1).

is approximately 38 m s-, a Value gEtietallv excteded in the winter ulpper

stratosphere . In the Sumner, the mean flow is easterly (Figure 1) and tlt.

waves are again trapped. A more detailed treatment of the linear problem is

SUMMER WINTER
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so - 20 /20
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Schematic latitude-hecight section of the mean zonal wind (m s-') at

Figure 1. From Holton (1975).

given by 14atsuno (1970). Including the Effects of the obser-vtd horizontil ind

vertical shear of the zonal flow in a numerical calculation with spherical

geometry, he finds that planetary wave-s do indeed become vErtical lV Evanrscr-nt

in the winter stratosphere, and are refracted toward the zero wind line in thL

tropics.

Thus, during winter and summer linear theory provides for the vertical

trapping of Rossby waves, and the absence of a terrestrial corona. But near

the equminoxes weak westerlies are observed in the stratosphere, which -hinuld

permit planetary waves to propagate to high levels. CharnEy and Drazin suggesL

"If large quantities of rnergy were actually to penetrate into the

rarified upper atmosphere, strong non-linear interactions could occur

which might modify the ulpper atmosphere wind and temperature structure inl

such a way as to Insulate It against further energy flux."

The remainder of this report will consider this possibility.



i II. Wave Mean-Flow 
Interactions

A. Mean flow equations

In the presence of wave transcience or dissipation, small amplitude
waves can induce O(a2 ) modifications in the zonally averaged flow. On a
beta-plane the equations for the second order mean flow are (c.f. Takahashi
and UryL, 1981):

( X (a)

I(51)

6'- (b)

(c)

I ~ 7 6  3r (/)7 (d)

I where (-) indicates a zonal average and (-) denotes second order,
zonally averaged quantities o<_ is a Newtonian cooling coefficient

i (discussed further below).

Only waves with no cross-channel phase variation will be considered,
so M, the wave Reynold's stress is identically zero. Thus, all changes in
the mean flow result either from dissipation or from the wave heat flux,
B. In the absence of dissipation (A-. = o) equations (5) yield a single
equation for the mean flow acceleration in terms of B. As above N2 and
H are assumed constant.

Note that (6)

Note that the L.H.S. of (6) Is simply

If the waves have the structure described by eqn (Id), B becomes

I and (6) becomes

!+ (7)
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The lateral boundary conditions for the beta channel are that V must
vanish at y = o and y = L. From the first of equations (5), this requires
that ut so vanish at the lateral boundaries. Thus, ut can he expanded
in a series of odd sine modes across the channel. But only the first of
these modes will influence the propagation of a wave with sin &Omerldional
structure, and therefore the remaining components may be neglected. This
is permissible because only the interactionof a single disturbance mode
with the mean flow is being considered. Projecting eqn (7) onto sin
and employing the same scaling as in part I yields

Here all quantities are non-dimensional and CIA and now represent
Lhe-_,_-l components of those quantities.

In order to determire the response of the mean flow to various
configurations ol wave lorcing, it is ,iseful to consider the Green

function for eqn (8).

Let

and

Then (8) becomes

• ~~...-<-c
(9)

For an infinitely dep atmosphere the boundary conditions for (9) are
that a be bounded at z = + Ck. Inclusion of the correct boundary condi-
tion at the ground contributes terms which decay exponentially with
height. The simple Greern function for as7

>

>__Zwhe re

Now Utt can be written .. 9)

-+ ? )(,.

L )
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B. Effects on the Index of refraction

Second order changes in the index of refraction (eqn(4)) are given by

It appears plausible that for some range of parameters a wave front could
reduce n2 to zero, resulting in the reflection of the following wave

i train. However, it turns out that wave fronts generally act to increase
n2, and can decrease n2 only in thin layers.

Consider a layer between zt and zB in which the wave forcing
is constant. for the leadin& edge of a train or packet of vertically
propagating Rossby waves) 9 will be positive. Outside of the forced
region qyt vanishes and 1iU Is negative, therefore - is positive.

I Equation (1) gives, for zl'7 z ?ZB,

L.. (12)
S I - _ , p

where' .is the constant wave forcing in the layer. If z is in the middle
of a thick region of forcing, or if the forcing varies very slowly with
height, the last 2 terms become small and

.f- e -4j
Then eqn (11) gives

.--- " -"

-(13)

In this case the refractive index must increase because for vertically

*propagating waves, fc is greater than l
It is clear from eqn (12) that a decreasing index of refraction is

most likely to be found at the top of a deep layer of wave forcing. In

this case -

The refractive Index will decrease only if

The decrease occurs within a layer with depth of order 1/1-' • Elsewhere,
the index of refraction will Increase. Even if n2 does become negative
in some region, wave tunneling will permit the propagation of some energy.
Thus it seems highly unlikely that a single wave interacting with the mean
flow can effectively inhibit its own vertical propagation by creating its
own turning point.
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C. The stratospheric sudden warming

The general tendency of a vertically Rossby wave front to increase
the vertical wavenumber and decrease the mean flow velocity leads to one
possible constraint on the amplitudes of vertically propagating waves. If
u is reduced to nearly zero, the vertical wavelength will become very
short, and dissipation will become important. Critical layer absorption
is an essential component of Matsuno's (1971) theory of the sudden warming.
The absorption of a wave over a thin layer is accompanied by strong heating

in high latitudes and cooling in low latitudes below the critical layer,
and deceleration or reversal of the zonal wind above the critical layer.

The sudden warming can be viewed as a backup for the linear trapping
of Rossby waves. In mid-winter a disturbance large enough to non-linearly
penetrate the zonal jet will grow with height until it destroys the wester-
ly jet, and prevents its own further propagation. Similarly, weak wester-
lies in late winter permit propagation to high altitudes, and indeed the
transition from winter westerlies to summer easterlies in the stratosphere
is frequently effected by a "final warming" as opposed to a gradual transi-
tion (Holton, 1975).

Second order theory can provide a rough estimate of the disturbance
amplitude required to reduce the zonal wind speed to zero. A slowly
varying packet of linear waves will propagate vertically with group
velocity Cg

C (14)

For waves varying slowly in the vertical the wave forcing of the mean
flow is given by

-2-
K I z- (15)

where Z is a slow vertical variable, and the perturbation streamfunction
is given by

- C Sk7 -~ (16)

where T is a slow time. Then the mean flow acceleration is

..)-7-r
-Ar
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This Is essentially a result obtained by Uryu (1980). Dimensionally this
gives

Ifor the amplitude (in height) of a disturbance sufficient to reduce a mean
zonal wind, JZto zero. At 600N, for 7

in meters.

I In Labitzke's (1981) description of the January 1979 sudden warming, the
largest zonal winds observed prior to the warming were about 50 ms-
From the above formula, this would permit maximum wave amplitudes of about
2,300 m, which agrees fairly well with the largest amplitudes observed forIplanetary wave number 1. This agreement is probably largely fortuitous,
as the slowly varying approximation is not even approximately valid duringI a sudden warming.

D. Dissipation

In the middle atmosphere the principal mechanism for dissipation is
radiative damping (Holton, 1975). Solar heating and infrared cooling tend
to restore temperatures to their radiative equilibrium values In times
that are of the same order as advective time scales. The Newtonian cooling
approximation is standard, in which it is assumed that the relaxation rate
of a temperature perturbation does not depend on the size of that perturba-

I tion. Then_)

where 1c, is the temperature In radiative equilibrium. C3 depends on theI concentration of radiatively active molecules (principally CO2 and 03),
the pressure and the background temperature in a complicated way. Dickin-
son (1973) gives estimates of uv.for altitudes between 30 and 70 km based
on a detailed radiative transfer calculation. His values correspond to
damping times of greater than 15 days at 30 km and 70 km decreasing to
less than 5 days at 50 km.

Blake and Lindzen (1973) suggest photochemical effects may increase
Di. substantially. According to their chemical model the equilibrium
concentration of ozone is temperature sensitive - ozone concentrations1decrease with increasing temperature. The absorption of solar energy by
ozone is the principal source of heat In the middle-atmosphere. If the
temperature increases, the concentration of ozone decreases, and theI absorption of solar energy likewise decreases, and vice versa. Blake and
Lindzen find that this photochemical acceleration of radiative damping
reduces damping times to about 5 days at 35 kmn, and to less than 25 days
at 50 km. Of course, this effect does not operate In the polar night.
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First, we consider the effect of radiative damping on steady linear
waves. Using the same scaling as in part I, eqn (3) becomes

A-A (17)

where c -. is the radiative damping time now scaled by "uk.

This has solutions the same as those In part I, but now the index of
refraction is complex.

/ -- :i &

M has real and imaginary parts

(19)

where -

and 2

The most striking characteristic of Newtonian cooling is that it
damps only the baroclinic portion of the wave potential vorticity,
therefore it is sensitive to the vertical wavenumber of the disturbance.
Generally an increase in the real vertical wavenumber will lead to an
increase in M I and a decrease in the damping height of the disturbance.

If the amplitude of a wave is increasing with height, i.e., if
MI < I, it is plausible thal the action of the wave on the mean flow
could increase MI to a valu, greater than 1, at which point the wave
would cease to grow with height. The remainder of this section explores
this possibility.

We now consider the steady state interaction of a slowly varying,
vertically propagating wave train with the second order wave induced mean
flow. Let

where

and

If we include second order modifications of the mean flow in the
linear vorticity equation, but neglect all interactions with other waves,
we obtain the 0(a3 ) equation
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LI~ ~~)~ (20)

In order to integrate this equation, it is necessary to find the second
order changes in the mean zonal wind and potential vorticity, gradient
induced by steady dissipating Rossby waves. With the exception that Ekman
damping at the surface is included here and Rayleigh friction is not, this
treatment follows 'closely that of Takahashi and Uryu.

The appropriate boundary condition at the surface for the mean flow
equations (eqn (5)) is that

where h' is the topography that forces the disturbance and WE is the
Ekman vertical velocity found at the top of the Ekman layer which is takento be at z = o. WE is given by

IE - -(A- bl
where DE is the depth of the Ekman layer. Combining these two equations
with eqn (5c) gives for the bottom boundary condition

r31 (21)

Non-dimensionalizing as before yields

I- -K
at z = o

I where

j and

Equations (5) may be combined for non-zero c-e and steady state to yield an1 equation relating the induced zonal wind to the wave forcing

Now I- =

I Therefore

I
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Non-dimensionalizing and considering only the sin 7 component of uyields(~ -~ 2Z

L frZ-j (23)

with bottom boundary condition

.,/ _ T A. V W . •(24)

at z=o 0'A

For a slowly varying, steady, dissipating wave, to leading order

2

So eqns (23) and (24) become

073L
and 7---(5g 4 El *?E ,,- C_ <-
at z = o

The boundary-.K.~dition on the wave solution is required to determine
the correlation V'H'. The linearized thermodynamic energy equation gives
for W', the perturbation vertical velocity,

At the surface

w '= ,,_ A " - 14e/Oe
where

So the non-dimensional surface boundary condition for~Y" is.., - ,, / -- << .=
and for ,, ;/ 1 & < -- ' .x ( -

So at z W 0

(/ p _ _-_ __f
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I Then V'H' isven bY __T ______

I - e - & ' " ," ' "" - ' .

I -J-
And k/

Then the surface boundary condition for u is

.- . _ I . . /(26)

I <at z 0

I If, as before, we write

I the Green function for equations (25) and (26) satisfies

I at z o

where

The solution is --
; IL -S :" e '-2-:d ) z -o

Then u is given by

IL
'4- (27)

' I ~Where - ~~6 _

and ,the mean flow forced from the lower boundary is

I ) cb3L '

Ul
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(28)

From eqn (28) it is seen that the response to forcing below the
forced region decays exponentially with the distance from the forcing,
while, if MI -- 1, all forcing from below effects the mean flow. This
is not surprising. The waves act on the mean flow by transporting heat,
and the zonal wind response really arises from the Integral of the thermal
wind equation from the ground upwards.

If is assumed to vary slowly with height, and if MI is

positive and O(l),iu can be approximated

-L J~ ~ (29)

Gi ven can be obtained, - ~ L

and for slowly varying z)

Z?~~-e~?~)z#:*(30)

Once again only those components of the second order quantities which

project onto the meridional structure of the disturbance are retained.

Now eqn (20) can be integrated vertically together with eqns (29) and
Sand (30). This is done numerically using a simple leapfrog scheme with a
weak 3-point filter to prevent the separation of solutions at neighboring
grid points. The integral in eqn (29) is estimated by the trapezoidal
rule.

Standard parameter values are

This corresponds to 600 wide beta channel centered at WI0N with a
wave 1 disturbance, a background zonal flow of 27 ms-1 , and a radiative
damping time of 275 days. This gives 3 small (.13) growth rate with
height for the linear wave, and permits consideration of the transition
from a disturbance growing slowly to one decaying slowly with height.

Figure 2 shows the behavior of the disturbance amplitude for these
parameters settings and an amplitude of I at z - o. This corresponds to
a height perturbation of 140 m. The disturbance grows slowly over many
scale heights before reaching a maximum amplitude of 480 m. As shown
below, the wave can be made to achieve its maximum amplitude at a lower
altitude by choosing a smaller damping rate, or a larger initial amplitude,
but then the validity of the slowly varying assumption is doubtful. The
third order corrections to the disturbance phase are also shown..
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The perturbation temperature is given by,

: 14

where R is the gas constant for air. The maximum amplitude achieved in
Figure 2 corresponds to a temperature perturbation of about 1OOK, and a
cooling rate of 3.60 day-l. This is of the same order as the mean
infrared cooling rates calculated by Dickinson, which indicates such large
disturbances may lie outside the region in which the Newtonian cooling
approximation is valid.

These results and those described below were computed neglecting tile
forcing of the mean flow due to the lower boundary condition (i.e.,neglecting adte -_

nelci ,and the terms in eqn (29)). It was found that
including these terms led to unrealistically low values for both the
maximum amplitudes achieved by disturbances and the heights at which the
maxima occurred. Neglecting these terms is equivalent to assuming the
waves have very small amplitudes at the surface and grow rapidly with
height before reaching a region for which the slow growth assumption is
valid. Observations of van Loon et al (1973) indicate that this is indeed

the case, at least for waves I and 2 in mid-winter. The amplitude of wave
I increases more than an order of magnitude between the surface and 30 km
(about 4 scale heights).

The computation was repeated with different parameter settings.
Figure 3 shows the dependence of the maximum wave amplitude, Y and
the height at which that maximum occurs, /,, , on. . While c"7_s
not especially sensitive to changes in , lncreases rapidly with
increasing . This is because increasing =< both decreases the
growth rate of the linear wave, and decreases its effectiveness in modify-
ing the mean flow by reducing r .

Figure 4 shows and / as functions of the disturbarce am li-
tude at the lower boundary, e (0). For small values of ' (0), .
varies slowly. Not surprisingly, it takes a greater height to achieve
for smaller values of I((0). As e (0) increases, however, the maximum
amplitude occurs closer to the lower boundary, and ,.,is tied more
tightly to e (0). Of course, the slowly varying assumption breaks down in

this region.

Figure 5 displays the variations of and A with L, the
meridional wavelength. When L is so small that the wave is nearly
evanescent, wave forcing of the mean flow is uneffective. ',and 14.,are
both large. As L increases, M r,. increases and /, and //..,,decrease.
However, -o. large values of L the wave forcing again becomes uneffective,
now because of the L dependence in eqn (25). Thus A and 4,- increase.

I[ .Conc lus ion

The largest amplitudes achieved by vertically propagating, dissipating
waves in the calculations described above ( '-500m) are in rough agreement
with the largest amplitudes observed in the atmosphere. A detailed comparison

with observations would require including the effects of sphericity, variations
in - and the static stability, and the vertical and horizontal shear of the
zonal wind. There is the additional problem that observations of planetary
wave amplitudes above 30 km are scarce.
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But the greatest drawback to the preceding discussion is the use of small
amplitude theory to describe waves that actually have very large amplitudes.
Lindzen and Schoeberl (1982) suggest a fully non-linear limit for the ampli-
tudes of Rossby waves. They argue that if a wave becomes so large that the
meridional gradient of potential vorticity in the perturbation exceeds the
potential vorticity gradient of the mean flow, then instabilities will result
which will inhibit further growth of the wave amplitude.

There are two obstacles to pursuing this suggestion. One is the diffi-
culty of the stability analysis for this situation. The other is the absence
of any observational evidence for such instability occurring in the strato-
sphere. However, the reduced static stability of the mesosphere (relative to

the stratosphere) make it a favorable locale for the occurrence of baroclinic
instability, and observations there are very limited.

It appears that most of the time, in the earth's atmosphere, Rossby wave
amplitudes are limited by linear evanescence. During periods of exceptionally
strong forcing wave induced critical lines can prevent the unrestricted verti-
cal propagation and growth of waves. Wave, mean-flow interaction coupled with
Newtonian damping is also a plausible mechanism for constraining Rossby wave
growth. And, finally, the instability of the perturbed flow may be important,
both in the mesosphere, and in situations in which dissipation is not strongly
dependent on the vertical wavelength.
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THE TEMPORAL EVOLUTION OF TAYLOR COLUMNS OVER TOPOGRAPHY

Grant R. Bigg

I. INTRODUCTION

The possibility that a region of stagnant fluid may be formed over an
object in a uniform rotating flow has been known of since Taylor's classical
experiments (1923). Since then a number of workers have studied the mathemati-
cal basis for this closed streamline situation for different types of fluid and

various parameter ranges. This investigation has recently Increased in activi-
ty due to speculation by Hide (1961) that the Great Red Spot in Jupiter's atmo-
sphere may be a "Taylor column" and also because of observational evidence from
the ocean that such features may appear in the flow regime over seamounts
(e.g., Meincke, 1971: Roberts, Hogg, Bishop and Flewellen, 1974; Owens and
Hogg, 1980; Gould, Hendry and Huppert, 1981). It has also been suggested that
some atmospheric features are created by shedding of vortices in flow over

mountain chains.

Most tot the work to date examines steady state situations; that is, a
uniform flow in a rotating fluid is assumed to have been in existence for all
time. The present report Investigates the transients that appear when the
flow is started from rest because any occurrence of Taylor columns In nature
will naturally be accompanied by temporal variation.

The flows to be considered here are such that the free stream speed is
smaller than the critical limit required for closed streamline formation. For

a discussion of these limits for homogeneous and stratified fluids see Huppert
(1975). The special features of the transient flow to he Investigated are the
way in which closed streamlines first occur after the flow is initiated and
the interaction of the vortex formed over the topography with the one swept
off as the flow begins.

1I. VORTEX FORMATION IN HOMOGENEOUS FLUIDS

Consider the equations of motion for an Inviscid, incompressible
fluid on an f-plane, viz.

VeQ (ib)

If it is assumed that a uniform flow of characteristic velocity Uk Is flowing
past a topographic feature of characteristic length L and height h in a region
of depth H">- h then by nondimensionalizing (1) in a standard way it can he
shown that for small Rossby number F = U/fL and h = O( f ) the leading order
equation of motion Is

4' y 7 w ), (2)

where ' is the zeroth order nondimensional horizontal velocity and i*' is
the vertical component of the zeroth order relative vorticity. Note that L/U
is the time constant, HU/L is the parameter associated with vertical velocity
and the nondimensional pressure is [P- egH(l-z)]/e UfL. Equation (2) Implies
that the problem reduces to two dimensions and, dropping Indices,

'A
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can be written as

For the details of this procedure see McCartney (1975).

Equation (3) is merely a statement of the principle of conservation of
potential vorticity. It is a nonlinear time-dependent equation and as such
has not been successfully examined analytically. To simplify the problem this

equation was linearized, that is, if the velocity is represented by

where U(O) = 0 and the t > o jqi -  I I , then, assuming the slope for
topography is not large, (3) may be written as

or, as V'

711/r 4 C1 V U'P,0 (4)

Note that the total streamfunction for the flow is

- o-) (5)

The steady solution to (3) is Y =_ so to find the vorticity
distribution for time-dependent flows let

so that (4) becomes

F. -r (6)

The general solution to (6) is just F G(x- jU(t)dt), G being an arbi-
trary function, so

as F(x,y,O) = h/ f due to the flow starting at rest. This equation tells us
that the relative vorticity distribution consists of two discrete components
-- one located over the topography and another being advected downstream with
the flow. Thus the linearization of (3) predicts the presence of anticyclonic
vorticity over the topographic intrusion and the generation of a cyclonic
vortex downstream; it does not allow trapping of the free vortex. To examine
this feature of the initial value problem the nonlinear equations will need to
be examined (see Section III); in the remainder of this section the formation

of the vortices will be studied.

Returning to our equation (4) for the streamfunction, this may he solved
by Laplace transforms If U is a constant or by Fourier transforms for general
U(t). The problem reduces in the latter case to inverting a complicated
transform:

6. 0 (8)

Ie t
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where f4(k,l) is the double Fourier transform of the topography and U1 (t) is
the integral of U(t).

As (8) is rather intractable for topographies satisfying the small slope
condition, equation (4) was further simplified by assuming that the topography
was elongated in the x-direction. This means that in the region of the bump

1/1 %.- 4/ y . Note, however, that this condition breaks down in the far-
field and possibly in the vicinity of closed streamlines. Equation (4) now
becomes

"tt )u ( 4 (9 )

T;r

This equation can be integrated to give

which, upon use of Fourier transforms and an integrating factor, can be
reduced to

)

where Y is the x-Fourier transform of I. Evaluating the z integral, (11) may
be written as

()I -tf) >. - If~e'L~ ~\ (12)

where 14 ,(k,y) is the x-Fourier transform of the topography.

For the particular case of a Gaussian-like topography, h-h oe .>< ("2)
may be evaluated to give

In Figure 1 plots of the streamfunctio. given by (13) are shown for three
different times with P< -.1, ho - .015, E - .01 and U --I. The solution
tends to breakdown at the point at which closed streamlines are formed but the
plots indicate clearly that the appearance of closed streamlines is a rapid
phenomenon, that is, the flow regime is suddenly transformed from a situation
in which the streamlines are only moderately distorted to a complicated

position. This agrees with the steady state results of McCartney (1975) which
suggested that closed streamlines appear from mildly distorted flows due to
only small changes in the incident stream. Also, evident in the graphs is the
presence of two regions of closed, or almost closed, streamlines. If the
assumptions used to derive (9) were not violated in the vicinity of these
regions the closed streamlines would be clearer but the trend is there. The
streamlines illustrated indicate that the leftmost region is the anticyclonic
vortex, while the second vortex is the cyclonic vortex.
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The elongation hypothesis has therefore giver an indication as to the initial

development of Taylor columns in a homogeneous fluid.

I

-2 5 ,, .Z .

-, \ I

1/ ,

Figure 1. Streamfunction for elongated topography |
(- = .1, ho = .015, C= .01, U =-I)

III. INTERACTION OF THE FREE AND TOPOGRAPHICALLY-TRAPPED VORTICESI!

In this section the interaction between the two vortices will be

examined assuming that they have already formed and moved apart. The
topographically-trapped vortex will be regarded as being fixed at the originI
while the "free" vortex, following the implications of (7), will be assumed to
be at (F,0) at t = 0. Taking the cyclonic vortex as being at (,0), rather
than an arbitrary positioon the x-axis, is don be e te two time required

for closed streamlines to appear is roughly one time unit for unit velocity,

which, as t was nondimensionalized by L/U, means that the feature should be
one length unit downstream by the elapsing of this time. It should be noted
that the vortices are here regarded as point vortices, as a first approxima-
tion.

The velocity components of the cyclonic vortex are given by the pair of

coupled equations

1 0 N 4 v ( 1 4 a )

ly . .(14b)

where \ is the strength of the vortex, given by f((h(x,y)/L )dxdy. For U(t)-

Uo this system may be solved by diviJing (14b) by (14a) and recognizing that
the numerator and denominator of the righthand side of the resulting equation

are the x and y partial derivatives respectively of

4 z In (15)
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The equation (14b)/(14a) may then be written as

-t 4Y (16)

which has the solution

v *L il + B 7 = constant. (17)

Using the initial condition specified earlier, (17) may be simplified to give

-r I (18)

which describes the path taken by the "free" point vortex. This equation was
also obtained by Huppert and Bryan (1976) as the homogeneous limit of a

calculation for stratified flow. They were comparing an analytic model with
some numerical results and found that the paths given by (18) were closely

followed by the vortices of the numerical model, except that the closed paths

indicate that bound vortices should rotate about the origin while numerically

there was an area in which the vortices appeared to stabilize. For most of
this section the period of the paths of (18) will be investigated and also

some reasons for stabilization will be discussed.

However, before this is done the paths given by (18) will be examined.

Firstly, if a phase plane analysis is carried out on the system (14) it is
found that at S = (0, - X/Uo) there is a center saddlepoint which means that

any path approaching the y-axis inside of this point is closed while any path
that is outside the critical curve is 2E- 1. As S is a saddlepoint it is

unstable and not even vortices infinitesimally close to S will be trapped

there, so this simple model will not allow a free vortex to come to rest.

Some typical paths are shown in Figure 2 and the variation of extremal y
values with Y , for closed paths, is shown in Figure 3. Note that the
negative-y turning point is increasing much faster than the positive-y
extremal is decreasing.

The period of a vortex moving along a closed path will now be considered.
If it can be shown that the period is large compared to the time scale of the
numerical calculations of Huppert and Bryan then the validity of this simple

analytic model will be seen to be better than previously suspected. However,
as steady state solutions with bound stable vortices have been found (Johnson,

1978a,b) it is clear that the model is not a complete depiction of what is
occurring.

The expression for the period of revolution Is

Y.f~;, J( :)y41d>)(9

where Ymin and Ymax are the two roots of the path equation x f(y). For

our path this becomes

T 1 ... f________________________(20)

%Iia ya)We +S~.)
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It can be shown that this integral has a square-root singularity at both

endpoints and a Gaussian-like numerical quadrature may be able to be devised

to evaluate (20) with some accuracy, but as a first approximation a truncated

Simpson's rule method with several hundred intervals was employed. The

results are shown in Figure 4. For the trapped vortex case considered by

Huppert and Bryan which, taking stratification into account, has (: 0.6 the

period predicted here is of the order of 150 days while their calculations
only went for 70 days. So the period estimate gives a significantly longer

time than was numerically pursued. Another encouraging fact is that the time

taken to reach the stable position was about a quarter of the period predicted

so at least the initial motion seems to be described by this model.

Two possible reasons for the "free" vortex to be trapped at a particular

place will be presented here. From Huppert and Bryan's numerical results

there appears to be some movement of the central anticyclonic vortex Induced

by the cyclonic vortex. It is conceivable that this interaction eventually

leads to an equilibrium situation in which the two vortices take up stationary

positions.

A second possibility is that as the vortices are actually of nonzero

extent perhaps their finiteness can alter the nature of the stability of point

S. Certainly this aspect of the problem will play a role in the solution

which, considering the closeness of the two vortices, could be of major

significance. A model to examine this effect will be described; it is at

present incomplete but provides a basis for further work.

Consider the anticyclonic vortex to he as for the earlier discussion, that

is, stationary at the origin. Let the cyclonic vortex be a circle of radius a

centered at the point (1,0) initially and (xf(t),yf(t)) in general. Note

that aL4(xf + yf)l/2. Now if this moving vortex is represented by a

collection of point vortices then the motion of one of these vortices located

at (xp,yp) is given by

lt .(21a)

The motion of the center of the cyclonic vortex is then given by

uQV ) 4L. f ~ d3,pbj (22a)

LYS: )k~ + jfr d It 1YP (22b)
d 0Tk
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where R. is the circle of radius a around (xf, yf). Substituting (21)
Into (22) and simplifying it is found that

t7)~ f -rI (23a)

_7r y~~~ f- (21h)

This system of equations has not been fully investigated but should at least
be solvable numerically, If not analytically.

So far, the results in this section have assumed that the stream velocity
attains its maximum value immediately after the flow begins. The effect of
allowing U = U(t) will now be considered.

The system (14) does not appear to have solutions which can be obtained
analytically if U is a nonconstant function of time. However, some closed-
path conditions can be established by considering (14) rewritten In terms of
R = jx2 + y2 ]i/ 2 , - = t and x:

d__ (2 4 a)

o( t * (P -l ) I t .
(24b)

Note that the variable sign in (24b) is positive when the vortex is in the
first and second quadrants and negative elsewhere.

Firstly, consider 0 < tr\z _-(= 2e-1 ) for all r> 0 and let the vortex
start at (1,0). Then as the vortex moves Into the fourth quadrant, equation
(24) implies that x Is always smaller than the critical path x and thus R is
always less than the critical path R, as long as the vortex is In this quad-
rant, so that the vortex remains in the vicinity of the origin. While the
cyclonic vortex is In the third and second quadrants (24 a) implies that
dR/dC 4 0 so the feature cannot escape In these quadrants. So finally
consider the first quadrant. Equation (24b) implies that as the vortex enters
the quadrant dx/dr is smaller than for the critical path and as dR/dr will
also be smaller, for a given x, the path of the vortex will move towards the
x-axis more sharply than the critical path. This fact, taken In conjunction
with the original equations and the entrance of the vortex to the quadrant at
a y-value greater than that for the critical path implies boundedness.

If we now let V()>r for all r> 0 and let the vortex start at (1,0)
equation (24) implies that dR/dr and dx/d-r are greater than for the critical
case so that the vortex approaches the y-ax1s at a y greater than the
saddlepoint and escape occurs.

As a final note to this section the case of a dip, rather than a bump, on
the lower surface of the fluid will be mentioned. For this situation, as X'. 0,
It is found that the sense of rotation of the two vortices Is reversed and any
advection of the free vortex downstream occurs in the first rather than the
fourth quadrants.

L. _____ ___
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IV. VORTEX FORMATION IN STRATIFIED FLUIDS

Consider a flow in a region R as decribed at the beginning of Sec-
tion II, with the added feature that the fluid is stratified with constant
buoyancy frequency N. Then, following Huppert and Bryan (1976), the equations
of motion for this system reduce to

J2- f + - I,, M-0 (25)

~ z:I-4(26)

" + .',( ) (27)

Vi, -- -(eyV" x.-- _- , (28)

being the streamfunction for the flow and U a function of time. As Huppert
and Bryan found, this problem is very difficult to volve so, to sImplify It,
the bottom boundary condition (27) was linearized. Therefore, the stream-
function being rewritten as in (5), our equations become

v; 4'1 4/2 z-O (29)
NX

---0 1 Z.--_ (30)

L'.4 + LTE + v .:o-- (31)

V 3p 0 -),- (32)

Using a Green's function approach to the solution of (29) - (32) it Is
found that

4.0Ff -- 6fc, yZ ;,, Y'5 V(x' A, #d .,> (33)

where G satisfies

TG+ TrG Cr*-r 1) (34)
All ZZ -

Z_ (35)

(36)

and T satisfies

"-"-t cU * %' (7

Y t7
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(see Duff and Naylor (1966), theorem 7.1.2). It can be shown that

In r I - 1_ f t-o K, (i.~ - r (r')) (38)
__7 Wf I~~ g

(see Appendix of Huppert and Bryan (1976) for similar Green's function deter-
mination), and (37) may be solved by transform methods to give

&LpI - -.

using the notation of Section II.

The solution to (29) - (32) will be examined for Gaussian topography
h = hoe- , where

-P - 4, e- /  (40)

and, from (39)

On z = 0 the sum in (38) can be simplified, as

( ^r-7:, ' -- .+(2,..,--lL (42)

(Gradshteyn and Ryzhik (1980, 8.526.2)) where b is Euler's constant, so the
streamfunction on this surface can be found from (33). This integral cannot
be evaluated analytically but if A - f2 /(NH)2 is small an approximate
solution valid near the origin for limited time can be obtained. An indi-
cation of the method of solution is given in the Appendix: here plots of the
streamfunction at three times are shown in Figure 5.

T l-O 7"~:2.0 " o #

Y" 1, \i/

-

01- 1--0..

• . 0 ,, ,, . -. . - _ 0 "

Figure 5. Streamfunction for stratified flow on z 0 (4 -4 .5, ho =.1,
H 1 , U - 1). (Note symmetry about y-axis).
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It will be noted that, as for the homogeneous fluid considered in Sec-
tion II, the transition from a mildly distorted mean flow to closed stream-
lines is rapid. Also, an asymptotic drift towards the origin is detectable in
the motion of the topographically trapped vortex. Note that the smallness of
the region of validity of the approximation means that the free vortex cannot

be seen; also for t ;. 4 the solution breaks down over the entire field.
However, even though the approximation is extreme, interesting aspects of thc
flow are still discernible.

V. FURTHER WORK AND ACKNOWLEDGMENTS

The investigation into the interaction of the two vortices produced by the
initiation of flow seems the most promising of the topics considered in this
report. The evaluation of the period integral (20) poses some Interesting
work in numerical analysis and the follow-up of the problem represented bv
equation (23) could lead to valuable insights into the physics of the trapping

of the cyclonic vortex.
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firstly for selecting me and secondly fur assisting me in having an interest-
ing and rewarding summer. In particular I would like to thank Joe Keller and
Roger Hughes for some Interesting discussions on the material contained In
this report, and the GFD Fellows for being such a great hunch. I also wish to
acknowledge the financial assistance of the University of Adelaide with travel
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APPENDIX: STRATIFIED FLOW STREAMFUNCTION

From the various expressions in Section IV the integral we need to
evaluate is

(Al

where r' 2 -- Tv and r 2 = x2 + y 2 . Most of the components of this
expression may be found fairly easily, at least with Integral tables, but the
terms involving the inverse square root under the summation are more complex.
This factor was simplified by assuming that k43= f2 /(NIl) 2 was small and
that because of the rapid decay of the integrand away from r' = 0 then for
small r the approximation

["n- I--/ (A2

could be made. This substitution enables the integrals in (Al) -o be evalu-
ated but effectively destroys the radiation condition, leading to the break-
down of the solution, even in the region of small r, after a short period of
time. This is clearly seen in the final expression,

- (4 L(LLrzzl (A3)

t6H4 ",,.

( H
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where S(x) is the Riemann zeta function, due to the presence of modified
Bessel functions of the first kind.
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EQUATORIAL WAVE RESPONSE DUE TO OSCILLATING WIND STRESS

by

Masaaki Takahashi

ABSTRACT

We discuss equatorial wave response due to oscillating wind stresses whose

meridional functional forms are very simple. The model is a single layer model
and meridional boundaries are included. The dissipations are included as the

forms of Rayleigh friction and Newtonian cooling with same relaxation time.

In the case of symmetric meridional forcing C: R , if the mixed
Rossby-gravity wave is included in the boundary condition, the upwelling at the
western boundary does not occur. On the other hand, if the mixed Rossby-

gravity wave is not included (Yamagata and Philander, 1982), the upwelling at
the western boundary occurs.

In the case of symmetric zonal forcing F:t , if we include the
short Rossby waves at the western boundary, the flow and height fields are
quite different from those in the case of long wave approximation.

Finally, in the case of local zonal forcing which exists at the central
part of the ocean, the upwelling at the eastern boundary is very weak.

I. INTRODUCTION

The problems of the equatorial wave response due to wind stress have been
considered by many authors. Those problems are very interesting because those
are relevant to the phenomena of the Somali Current and the El Nina. For

example, Lighthill (1969) and Anderson and Rowlands (1976) studied the equator-
ial wave response problem concerning the Somali Current. McCreary (1976) dis-

cussed the problem concerning the El Nina. Cane and Sarachik (1976, 1977,
1981) studied the linear response problems of the equatorial waves to external
forcings in detail.

In the present note, we discuss the equatorial wave response with dissipa-
tion due to the oscillating wind stress. In particular, we want to comment on
the role of the short waves at the western boundary in the equatorial wave

response due to the wind strusses whose meridional functional forms are simple.

In Section II, we introduce the equatorial wave response problem. in
Section III, we discuss the equatorial wave response with dissipation due to
the simple oscillating wind stress.

[I. THE MODEL AND BASIC EQUATIONS

As basic equations for the equatorial wave response problem due to wind

stress, we adopt the following shallow water equations on an equatorial
(3 -plane,

t(1a)
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(lb)

Dt (1c)

where . i ,-!r) is Rayleigh friction and is Newtonian cooling.

For simplicity, it is assumed that the Rayleigh friction coefficient is equal
to the Newtonian cooling coefficient. F g'I and G k-""t are oscillating
zonal and meridional wind forcings. Other symbols have conventional meanings.

We will consider the meridionally bounded problems, then as the boundary
condition we impose

1A z0O ct -1'= PA# It= V)E
(2)

First we nondimensionalize (1) by taking " /i'41 )4/4 as a length scale
and , )-1/4 as a time scale. Then eq. (1) is transformed into:

lot Ut P(3a)

1' jV (3b)

L ,A 1 (3c)

where

In the case of no-external forcing, the eigenfunctions and eigenvalues
with no meridional boundary are well known (Matsuno, 1966). We assume wave
solutions as follows,

Then the following equation for v(y) is obtained,

where is complex wave frequency.

The solutions which tend to zero as y . + are

V* (6)

where Hn is the Hermite polynomial of the n'th order (Matsuno, 1966). The
dispersion relation is given by

L,( C7a)

let - 1 2+ I (7b)Z.I
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where nul, 2,

In the case of n - o, the dispersion relation is as follows,

--U_-' (8)

which is the mixed Rossby-gravity wave at the low frequency.

Eq. (3) (F = G = o) has the other wave solution; v s o (kelvin wave). The
solution which tends to zero as y-4 + oo is

-+-2(9)

The dispersion relation is given by

K4- (A (10)

Following Gill (1975), we introduce new dependent variables q and r, which
are defined as

= h+ u (Ila)

L4.- (11b)

In the present paper, we consider the forced oscillation problem. Then expand-
ing the dependent variables (q, r, v) as series of parabolic cylinder functions

and utilizing the orthogonality of the functions, we obtain the following set
of equations, ( ,

(13a)
I t' T (13b )

V , J: 0. -1 >
(13c)

10 1\13d)

'I C f "4[ (13e)

1I. THE CASE OF SIMPLIFIED FORCING

a). Meridional forcin&

In this subsection, we consider the equatorial wave response due to the
following simple meridional forcing,

where (14)

where GO constant.
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From eqs. (13), the equation for q' is

i -(A+ -L)% ! (15)
T 2 A A -

where A f  
- j • The solution of q' is

'': c' r(A* )7( (16)

It is noted that the first term corresponds to the mixed Rossby-gravity wave
reflected at the western boundary.

The equation for r' is, from (13),

Td-l i ±..~ A + 7 I& (17)

The solution is

Y- (18)

where

(19)

In the present note, we adopt 40 cm as the equivalent depth. Then, the
time scale and the length scale for nondimensionalization are 1.2 days and
2 x 107 cm, respectively. And we adopt the dissipation time = 20 days,
frequency = 21C/A year. tl., o- 6 .. Ok: #- 6.1..

We consider the slowly oscillating problem. Then it is noted that the

first and the second term of eq. (18) corresponds to the n-2 long and short
Rossby wave respectively.

For simplicity, following McCreary (1981) it is assumed that the n = 2
short Rossby waves are not excited at the western boundary (B.. = o). Then we
can determine C' and B+' from the boundary condition q' f r' at It = o and I%
XE as follows: $

- M'z (iA' AA))

Fig. 1 shows the pressure and velocity fields at t o when we adopt
GO 1 and XE - 23.9 (actual width - 5000 km).

There is strong meridional flow at the western boundary whose amplitude is 15
on the equator. The meridional flow is very weak at the other regions. Zonal
flow becomes 0 suddenly at the western boundary. At the western boundary, the
upwelling does not occur. Namely, h so at the western boundary. This result
is quite different from the result of Yamagata and Philander (1982). It is
because they neglect the term which shows the mixed Rossby-gravity waves, and
sufficient energy does not escape from the western boundary. Then, in their
case (linear case) the upwelling at the western boundary occurs.

-- Mimi
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Fig. la, b, c: The pressure, zonal flow, meridional flow at
t - o due to the meridional wind stress.
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When we take into account the n = 2 short Rossby wave and the n = 4 Ros.b:
wave but neglect the n = 4 short Rossby wave, the results of the wave respons,,
are not so different from the above results.

b). Zonal forcinj

Next we consider the equatorial wave response due to the zonal forcing

whose functional form is

(21)

where FO = constant.

In this case the solution for is

1 -Aik . A (22)

where CO is determined from the boundary condition. It is noted that the
first term shows the Kelvin wave.

The equation for rO is

'* •I~~4.~ At 23)
j2 A A)..

The solution for ro is

t (24)

where A'

and
C h - f ,l+, A-&- fI 4 "

ot. "z + '2(+IA
* 4A~ 4-(Ab

which correspond to n = 1 long (+ sign) and short Rossby waves.

i) Case 1:

In this case, we adopt long wave approximation, i.e, B- o. Ther , C;i.
obtain the following solution from the boundary condition

C€ --

S"(AdI4  ' '26a'

I(

5S- . . -u 2b,
A[
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Fig. 2 shows the pressure and velocity fields at t = 0 when we adopt

FO = 1. Other parameters are the same as those in Case (a). The maximum

high pressure exists at the eastern boundary on the equator whose magnitude is

10. The minimum low pressure exists at the western boundary on the equator

whose magnitude is -10. The maximum zonal velocity is 6.5 at the middle region
on the equator. The meridional velocity is weak whose maximum amplitude is

0.25 at the western boundary.

(ii) Case 2:

In this case, we take into account the n = I short Rossby wave and n = 3
long Rossby wave but neglect the n = 3 short Rossby wave. Then we must
consider q2 and r2 . The solution for q2 is

(27)

From (13), the equation for r2 is

1 ;-A TY
- - (28)

The solution for r2 is
yl YL

Y 5I- "' "  (29)

where __

c4 t It&(0??+1)A2IbA4 (30)

which corresponds to the n = 3 long Rossby wave. As mentioned above, we drop
the term of the n = 3 short Rossby wave in (29).

Using the boundary condition rO = qO at X = o and -yE , we can
get the following equations for CO, B+0 , B-0 , B+2 ,

(31a)

AlCo A etIja + + H
- (31b)

I - 446y

o ,~ (31c)

(31d)

Fig. 3 shows the pressure and velocity fields at t o when FO = I. In

this case, the strong meridional current exists at the western boundary. The
maximum amplitude is 26. The maximum zonal velocity is 9.4 at the middle

region on the equator. This value is about twice as that in Case I. Reverse
zonal current occurs at the high latitude region. The pressure at the western

boundary is weaker than that in Case 1. The magnitude is -5.
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Fig. 2a, b, c: The pressure, zonal flow, meridional flow at

t - o due to the zonal wind stress in the long

wave approximation.
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t - o due to the zonal wind stress but not for
the long wave approximation.
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These features are quite different from those in the case of long wave

approximation. The role of the short Rossby waves at the western boundary
seems to be very important (Cane and Sarachik, 1977).

t). Local zonal forcing

In this subsection, we consider the equatorial wave response due to the
local zonal wind stress. We assume the following functional form

(32)

In the above expression, zonal dependent part foo is nearly

At 4,A iXQe it (33)

4 2 -

The process of obtaining the solution is the same as in Case b (ii) (Appendix).

Fig. 4 shows the pressure and velocity fields at t = o. The position of
the minimum low pressure is the place of the maximum gradient of the zonal
wind stress. The regions of the low pressure are wider than those in the case

of b (ii). Maximum high pressure at the eastern boundary is 2.6 which is
smaller than that in Case b (ii). Reverse zonal current is stronger than that
in Case b (ii). The meridional current has the reverse current near the
western boundary. The maximum meridional current is 21.

IV. CONCLUSIONS AND REMARKS

Assuming the most simple zonal and meridional forcing function, we have
discussed the equatorial wave response due to the oscillating wind stress. In
the model the meridional boundary exists and the dissipations are included as
the form of Rayleigh friction and Newtonian cooling.

In the case of meridional forcing T: e A , if we contain the
mixed Rossby-gravity wave in the model, the upwelling at the western boundary
does not occur. On the other hand, if we do not contain the mixed Rossby-
gravity wave (Yamagata and Philander, 1982), the upwelling at the western
boundary occurs.

-1/., t
In the case of zonal forcing F = , if we adopt the long wave

approximation, meridional current at the western boundary is weak and the
upwelling at the western boundary is strong. On the otaer hand, if we contain

the short Rossby wave in the model, the meridional current at the western
boundary is very strong and the upwelling at the western boundary is relatively

weak.

Finally, in the case of local zonal forcing at the middle part of the
ocean, the position of the minimum low pressure is the place of the maximum
gradient of the zonal wind stress. The upwelling at the eastern boundary is
weaker than that in the zonal independent zonal wind stress.
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Fig. 4a, b, c: The pressure, zonal flow, meridional flow at
t - o due to the zonal wind stress but for
local zonal forcing case.
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In the present note, we consider the equatorial wave response due to the
oscillating wind stress of a very simple functional form. How does the
zonally varying meridional wind stress change the equatorial wave response due
to the zonal wind stress only? The problem is very interesting. The problem
will be considered in the near future.

APPENDIX

The special solution for qO is -it..-- _ -ic

Xf

+ -- t A ) (Al)

The equation for ro is

(A- RO, + (A2)'12A 6) A (A2

Then the special solution for rO is

t~ _____ X ,. " Vt,'A A- + - C 'e + -e

where

a = -I ' -1!&" )a

b = (A4b)

I-F1 I -x" (A1

C. 7 (A4c)

14 rl'

d (A4d)

(b L &.q (A'

-r "*" . x
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I tl
g ffi - (A4e)

1+1V I VE

h A r - (A4 f)
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VERTICAL CONVECTION AND HORIZONTAL ADVECTION

Stephan Fauve

ABSTRACT

Internally generated vertical vorticity enters the leading order evolution
equation for fixed-flux convection with shear stress-free boundary conditions,
and may lead to a time-dependent regime at the convection onset in the case of
low Prandtl number fluids.

INTRODUCTION

It is known since the experiments of Benard, that the transition of a
fluid layer heated from below to a convective state involves two phases of
different characteristic time scales: during the first phase, the layer
rapidly resolves itself into cells; the second phase corresponds to a large
scale horizontal diffusion of longer characteristic time, which regularize the
convective pattern (at least with high Prandtl number fluids).

In the case of fixed temperature boundary conditions (Segel, 1969) and
Newell anl' Whitehead (1969), considering a slow modulation of the convective
velocity amplitude, have shown the diffusive character of the spatial nonuni-
formities propagation. In the case of fixed-flux boundary conditions,
(Chapman, 1978), using a shallow water approximation, has derived the
nonlinear evolution equation for the leading order temperature disturbance.
This equation, which also describes a large scale horizontal diffusion, is
connected with the translational and rotational symmetries of the problem (See
Section 2.)

The purpose of this work is to show how this diffusion equation is
modified, when vertical vorticity modes are taken into account. It iF known
that these modes, first considered by Ledoux, Schwarzschild and Spiegel
(1961), can be coupled to convective modes, linearly in the case of rotating
convection (Chandrasekhar, 1961), or nonlinearly by the inertial term V.V of
the Navier-Stokes equation, without rotation (Busse, 1972). In the case of
fixed temperature boundary conditions, Siggia and Zippelius (1981, 1982), have
shown that the Segel-Newell and Whitehead equation is in error for free-slip
boundaries, when the internally generated vertical vorticity is taken into
account. The important qualitative effect of vertical vorticity modes, is to
add an advective term to the large scale horizontal diffusion. We have
obtained the same type of result in the case of fixed-flux convection, (See
Section 3), and have begun to look at travelling waves solutions, In the case
of a low Prandtl number fluid.
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I. Definitions and Governing Equations

We consider an horizontal layer of fluid of depth 2D, heated from
below.

i T

T T

Using d ,1K , and &T as scales for length, time and temperature, respec-
tively, the dimensionless equations for the velocity P and the deviation e
of the temperature from the static distribution, can be written in the
Boussinesq approximation:

CA
4 ..%-7 &

The physical parameters of the problem are expressed in terms of two dimen-
sionless numbers:

the Rayleigh number R 0  r

the Prandtl number (- K

q is the acceleration of gravity, oc the isobaric thermal expansion coef-
ficient, bT the temperature difference across the layer, 1 the kinematic
viscosity, and K the heat diffusivity. The unit vector '. is directed
opposite to gravity and Vff includes all the terms that can be written in the
form of a gradient. The thermal boundary conditions are

()Z = 0 ' -Z = =

and corresponds to the case when the boundaries are much poorer conductors
than the fluid. This problem was first investigated by Jeffreys (1926) and
more recently by Sparrow, Goldstein and Jonsson (1964), Hurle, Jakeman and
Pike (1967), and Jakeman (1968). These authors have shown that as the ratio
of conductivities of fluid to boundary becomes very large, the critical
horizontal wavenumber for the onset of convection approaches zero. Childress
and Spiegel have exploited this property to develop an expansion scheme in
powers of the horizontal wavenumber, which is a method applicable to many
types of convection problems (Spiegel, 1981).

Finally, our mechanical boundary conditions are

w - 0, uz - vz - 0; z- ± 1
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where w is the vertical velocity and u(u v) the horizontal velocity. We have,
therefore, for the vertical vorticity . z - 0; z - + 1.

2. Examples

We consider in this section 2D motions, and write the velocity in
terms of a streamfunction 4)(xzt), v - (-P.' , 0, 4,). We adopt the
scalings used by Chapman (1978) for horizontal and vertical length and time\_ , ;EI -> )o t - E4

but we consider small Prandtl numbers

0-O(e) (case A); O'=oCe) (case B).

We must take4 = 0(6 ) and (3 = 0(l) in the first case, and 4) -0(6 ),
e 0(O- ) in the second, in order to be able to get an evolution equation
where nonlinear terms appear at the leading order.

- Case A: o = 0(cL ).

The Boussinesq equations are in terms of %V

= + + + " , (,)

e4 ,. O. e7),e,,e% . (2)

where J is the usual Jacobian.

We expand 4 t3 and R in powers of E
+ +.

R7 RW' A " E

At 0(l) equation (2) yields

and thus with the boundary conditions

e Z -0, z - ± 1; d U
- f(xt)

Equation (1) gives
,( _eP(= . where

I 4

We continue to solve the problem at each order, until we find an equation that
determines f(xt). The solvability condition

SZ 0
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written at O(e) gives the critical Rayleigh number R(O)

(This unusual value is due to the depth 2d of the layer). At 0( C ) we have
similarly 0,

LlL

IV
where IT = PP''' -PP'

The solvability condition at O E2 ) gives

a(1) = o

At 0( C" )we have

G()= Q - tIl(L +1 . X.

where j*-z p 1r

, : IL W RP

S = - R ). Ra')P(z,- R2t( PS(L) -4-

+ terms involving odd z polynomials which do not contribute to the
evolution equation.

ivI I) H I 1 I t I -Kiwhere R',G?-.p S , P T = _ pT

The solvability condition at 0(E+ ) gives the evolution equation

where k 0.8, d = 1.2, o( = 0.01, - 0.01, RLa'/R(
We must require suitable lateral boundary conditions in order to solve this
equation.

fx = 0, fxxx 0; x

which describe shear stress free boundary condition without lateral heat flux.

We expand f and r by a new small parameter

+ ~ + ,2 rl --

The leading order yields

where we have scaled the time like . The solvability condition at the
third order gives the Landau equation

S(4)

._.t . .... .... ... . .. ... ...... ... -. .a ,-
,
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Since a > 0, we have a supercritical bifurcation like in the r- = 0(1) case.

In the steady case the solution to (3) can be reduced to quadratures, but a

numerical solution would be a better way of obtaining the form of x).

- Case B: cr G()

A similar procedure gives the evolution equation:

It would be interesting to look at the travelling waves solutions of (5)
numerically, because of the new time dependent term fxxt on the righthand
side. We can notice that the equations obtained for the different scalings
of c- , are all of the form

ft ( )x

which is connected with the translational invariance of the problem. All of

these equations involve only terms with an even number of x-derivatives, in

contrast with the well known KdV equation -- ,-- . The relevant
variance is there

x-) -x, t-0 -t

Finally, we can notice that the nonlinear terms of our equations are always
cubic in f. This is due to our symmetric boundary conditions. When effects

involving asymmetry between the top and bottom layer are introduced, square
nonlinear terms are obtained: (f2 )xx when nonBoussinesq effects are taken
into account (Depassier, Spiegel, 1981) and (f2)xx with one rigid boundary
and the other stress-free (Chapman, Proctor, 1980). (The term (f2 )xx has

also been obtained by Childress and Spiegel in bioconvection.)

3. Vertical Vorticity Effect in Fixed-Flux Convection

We now consider the 3D Boussinesq equations, with 0(l) Prandtl number

and the usual scalings

In this section we adopt the following notations:

The Boussinesq equations are

- , .. . .(1). .tA ~ ~ ~ 1 *V' ve L1 %
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1_6 (2)

E '7-+ A (3)

At 0(1) (3) yields
f(xyt)

We calculate TV using (2) and U M Z using (1). We integrate using the
boundary conditions for
We have therefore

' (o) is at this step an arbitrary function of xyt, connected with the
vertical vorticity

We now use the continuity equation

'. % + Wz 0 (4)

and get, using the boundary conditions for w

Before following the same procedure at 0( Q-7- ), we should notice a problem
which arises when we write the solvability condition for 0") . We get

The critical Rayleigh number must be independent of U(o), so U(o) must
satisfy the relation U V(o). f = 0. It is then easy to calculate (9 ,
41 ) and w"), but a same kind of problem arises when we write the solva-
bility condition at O( C4 ):

The evolution equation for f involves the term in order to
eliminate it, we consider a solution (c, e ) of the Boussinesq equations, and
make the transformation

If V Is constant, and E) 0, we have a new solution if V. " C • If V is
slowly varying in x and y, we write the equations for V and

•4 - .1-,( . -,,, . - . ' p

- V. Vw - .V +UV ) (2')

_ _ A(
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.4'7 .\ + ~ v~) -I~ (3')

At the leading order (3') yields

Using (2') and (I') we get

VF 0
Therefore (3') at O ( ) yields

Noi -' k.)

Generalizing this result, we adopt the following condition

:0
where V is the nondivergent part of U. Consequently we can eliminate the
term from the evolution equation, and we get

2 It

where C 4  'A.

and

The equation for the vertical vorticity

gives the equation for h(xyt) at O & )

The leading order vertical vorticity h effect is therefore to add an advective
term( ,. to the evolution equation for f. The equation for h describes
the generation of vertical vorticity due to the convective motion. These two

equations can be written

A4 -~ -+A .-

or using a stream function for U (0) x 7

--
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To see at which order the vertical vorticity is generated, we expand f,
and r in powers of a new small parameter 6 (Malkus and Veronis, 1958).

C ) $r L 2.

At the leading order we have

We choose a square planform

f(1) - cos x cos y

The solvabillty condition gives

r 0 C' at the second order

- _ at the third order

and we obtain

The vertical vorticity is generated at the fourth order

Consequently we have at the leading order for U(O)

Finally, we can notice that the advect.¢e term due to the vertical vorticity
do not affect the Liapounov functional introduced by Childress (Chapman, 1978)

since

~ .~ =
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with the boundary conditions

Extensions of the present work

With the Prandtl number scaled with L , we have obtained

These equations have no nonlinear terms except coupling nonlinear terms
between f and h, and we must get them using the reconstitution method (Spiegel

lectures in 1981). We have begun to look at the travelling waves solutions of
the equations, which may exhibit an interesting spatial behavior. We have

also looked at rotating convection. When the rotation order of magnitude

is GE , the effect of rotation is simply to inhibit convection. The case of

0(1) rotation, recently considered by Riahi (1982) in the case of infinite
Prandtl number, may involve interesting instabilities in the case of finite

Prandtl number. In particular the question of the existence of overstability

should be studied.
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MODELS OF LARGE SCALE FLOWS WITH RELEVANCE TO SOUTHERN
OCEAN CIRCULATION

Peter Haynes

1. INTRODUCTION AND MOTIVATION

Recent theories (Rhines and Holland, 1979) of the large scale wind-driven
circulation of the ocean have exploited the idea that in subsurface layers
remote from direct wind forcing flow takes place along contours of constant

potential vorticity, simply because the steady flow is governed by the
equation.

0
(1.1)

where u. is the velocity and q is the potential vorticity. For large scale
flows, that is on length scales greater than the Rossby radius of deformation,

we expect relative vorticity to be unimportant so that q, is equal to f.V(Inp)
where f is the Coriolis parameter and p is the density. In weak flows

contours are roughly zonal, so in an ocean with meridional boundaries the flow
is blocked, and there can be no velocity in the subsurface layers. However,

motion can occur, firstly if the forcing sufficiently deforms the % contours
so that they no longer intersect the boundaries, essentially if they become

closed, and secondly, if the zonally oriented q, contours have an uninter-
rupted path and reach no boundaries. The first case is the basis of the
theory presented by Rhines and Young (1982a), and they then use the result
that, under certain assumptions, concerning the eddy flux of potential

vorticity the potential vorticity will be homogenized in regions of closed
streamlines (Rhines and Young, 1982b) to determine the vertical structure of

the wind driven circulation. The second case is only true in the Southern
Ocean, where the unblocked contours around the Antarctic allow a strong
current to flow. The wind stress during this current cannot be balanced by
pressure gradients, neither does the Sverdrup constraint control the transport

of water, since here the flow is along rather than across q, contours, so
that the dynamical balance must come from horizontal momentum transport,

bottom friction (Gill, 1968) or topographic drag.

The problem which will be considered is that of the wind driven circulation

of the South Pacific. The dynamics contains both the ingredients remarked
above, the subtropical gyre is bounded meridionally, and the transport is
presumably largely controlled by the Sverdrup constraint; poleward, however,
the gyre is bounded by the Antarctic Circumpolar Current, and it seems likely
that this will affect the structure of the circulation in the gyre.

Observations show that the wind driven gyre in the South Pacific pene-

trates much deeper than that in the North Pacific or North Atlantic although
we would still expect the depth to be constrained by (20). Figure 1 is taken
from the atlas produced by Levitus (1982). We see the wind driven flow between
500 m and 1000 m dominated by the subtropical gyres in each of the world
oceans, and the Anatarctic Circumpolar Current. Deeper, however, in Figure 2,
there is little evidence of organized wind-driven flow in the North Pacific or
North Atlantic, but in the Southern Oceans, and in particular, in the South
Pacific, an appreciable wind gyre can still be seen. There is also consider-
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able evidence of topographic interaction with this circulation (at 120OW)
where the East Pacific Rise reaches about 2700 m depth. The structure of the
isopycnals in Figure 3 shows them plunging in the region of strong vertical
shear in the circumpolar current and then rising again to form the bowl of the
wind gyre, even below 2000 m.

It is natural to speculate that this deep circulation results from the

proximity of the subtropical gyre and the strong eastward current.

2. TOWARDS A PLAUSIBLE MODEL OF THE SOUTH PACIFIC CIRCULATION

As has been noted, the wind-gyre and circumpolar curent system cannot be
controlled by a single dynamic balance and a solution of the full dynamical
problem would of necessity be extremely complicated. Here, attention will be
focused on the structure of the wind gyre. The zonal current, and its depth

structure, will be imposed and no attempt made to understand its dynamics. In
the real oceans the subtropical gyres are driven by wind stress curl of one
sign only, and the return flow occurs in a western boundary current. To avoid
the complications involved if such currents exist, a wind stress curl distribu-
tion will be applied which has regions of positive and negative values, and so
drives a closed 'mid ocean' gyre (Rhines and Young, 1982a).

It will be assumed that quasi-geostrophic dynamics may be applied, and
further, that the motion is large scale so that relative vorticity may be
ignored. These simplifications are necessary for an analytically tractable
problem since, as remarked earlier, the forcing must be strong enough to
deform the q, -contours, and indeed close them, and the dynamics are essen-
tially nonlinear.

Before attempting to solve a problem which is in any sense realistic, a
pair of simple problems will be investigated, for the purpose of highlighting
the important physical mechanisms involved. The response of a two layer model
to wind forcing will be determined; firstly, if the fluid is at rest without
the forcing, and secondly, if there is a uniform zonal current.

The equations of motion are

J(1kt,., ) wo  (2.1)

J( 1 , 4 ) = 0 (2.2)

where I and'j- are the upper and lower layer streamfunctions, (j. and CIL are
the upper and lower layer potential vorticities, and wo is the wind stress
curl, which imposes a vertical velocity in the upper layer.

The potential vorticity may be written in terms of the streamfunction thus,

i + F '('k-,W1') (2.3)

+ r (2.4)

where X , denote zonal and meridional Cartesian coordinates respectively,



-265-

C-4

CN1
0 0

.1 -4

C:C)

co
*0

ca

0

0

C:CV

too

CDV

cq-40

(W) Hld3



-266-

is the gradient of the Coriolis parameter, and F is equal to the inverse i
square of the Rossby radius of deformation.

A convenient form for the wind forcing, exactly as used in Rhines and Young
(1982a) is I

wo - o(X < (2.5)

0I,- o at I |

This forcing satisfies the condition f W, d = 0 necessary for a closed

mid ocean gyre. -o

If there is no zonal flow this problem has been solved by Rhines and Young
(1982a). Adding (2.1) and (2.2) gives the equation

J( ) = wo (02.t)

and may be solved for 1~ti- by integrating westward from Xz +c-I

Equation (2.2) may now be written as

J(*z 1 F( ,) I) = 0 (2.7)

so that -W is constant along lines of constant F(-V r - ) + f.;
Since '*,. is zero at large distances from the forcing region, it must be every-
where zero, unless the lines of constant F( ' I + -41  ) + P9 close, when V.
is allowed to be nonzero in this closed region, although the functional depen-
dence of *, on F( l+' ) + Py cannot be determined from the equations
as they stand.

From (2.6)

.+ - (x+ "-c -  l<o
24, (2.8)

and the lines F( 4' + ' ) + are circles with center at Y 4=0(F
in I' c -c r, These lines close, and can be nonzero, if

that is, if the forcing is sufficiently strong.

Contrast this result with the solutions if there is a zonal flow. Then
(2.8) becomes

(,, I <rL (2.9)

I.
I
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Then (2.7) and the conditions on V2- outside the forcing region give the
solution to the problem as

-~ -4~ }(2.10)
These solutions are valid everywhere providing the F( -+,t V ) + lines do
not become closed. We see that these solutions have a different character
from those obtained with no zonal flow. Firstly, there is always a response to
the wind forcing in the bottom layer. If 0< iAF < 2 , the size of this
response will be greater than that in the upper layer. There is a sharp reson-
ance structure when &Ldf is equal to 2, which is when the zonal flow brings
the freely propagating Rossby waves to rest, so that these are trapped in the
forcing region.

If we turn the problem upside down (2.10) is simply the response of the
two layer system to the topography, h, defined by

Hd x ~--- rrL') i lI I
IrTU

0 W 1 r (2.11)

Of course the wind stress imposes a vertical velocity, upward in Xl < C and
downward in x PO which corresponds to 'negative topography' at the surface.
The response in the lower layer is larger than in the upper for
because the interface tends to conform to this wind imposed topography, so

that the response in the upper layer is small.

Similar calculations to that presented above have been done for three and

four layer models, with each layer being the same depth and containing fluid
traveling at the same uniform velocity, LI in it without the forcing. In a

three layer model the resonant conditions are flkFz I and 0/4 '-" and the
response is largest in the lowest layer if 0< P/UrF i - With four layers

resonance occurs if RF = 2-; Q eyv2 iJ2 and if O < 61/u < 2-
the largest response is in the lowest layer.

Finally, a continuously stratified model is considered. The vertical

coordinate is denoted by Z , the sea surface being at * = 0 and the bottom
at A -H. The governing equation, the large scale quasi-geostrophic
potential vorticity equation, is

J( _k+ I % ) = 0 (2.12)

where 1 = L) , N2 being the buoyancy frequency, assumed
constant, and f the Coriolis parameter. If the streamlines do not close we
deduce that

~ ~' ~ -(2.13)
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by going along 4 - constant lines until out of the forcing region. The
boundary conditions are

J( '* I 'Wi ) = wo  at 0 o (2.14)

J( -- 1 ^* ) - 0 at i -H (2.15)

If the streamlines do not close on I - -H we may deduce that = 0 on t = -H.
Integrating (2.12) between I = -H and 1= 0 gives a condition on the baro-
tropic streamfunction *R , defined by

'1 B =.dZ (2.16)

which is just

J ) - wo (2.17)

The solution for is

k~~~~&j~ + %)f (2.18)

obtained by solving (2.13) with the boundary condition (2.15) and the con-
straint (2.16), given * from (2.17). Here the largest response is at
i --H, that is at the bottom, and it appears that the results from the layer

models are most relevant to the continuous model if the westward flow speed is
greater than the propagation speed of all the free modes., i.e., the system is
superresonant.

A wind rtress imposed on a constant zonal current is not a satisfactory
model for t.te South Pacific circulation, but the intuition gained from these
simple examples will be used later to explain the results for more complicated
systems. The simplest modification that can be made to the constant current
Is to confine it to being south of same latitude -- this provides a model
which is worth more detailed study.

3. TWO LAYER MODEL

We solve the two layer quasigeostrophic equations

T 1-, 1 q,) W,+- V41 L-i'4)(3.1)

' *,"')=0 +- P, V, -+) - 4 (3.2)

where ql and q2 are given in terms of , and 1+ by (2.3) and (2.4). The
extra terms on the righthand sides represent --eaa eddy effects producing
vertical transfer of momentum, and bottom drag. We neglect these terms to
leading order, but expect that they will be necessary to determine the
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circulation in the region of closed streamlines. The forcing wo will be of
almost the same form as before apart from a shift of origin so that

W N < r

0 -(o, r

We seek solutions with

W1  L~ 0 Lbh 0'

outside the forcing region. It is difficult to pose these as upstream or
downstream conditions since, depending on the velocities of the fluid, informa-
tion may propagate either eastward or westward. It would be possible there-
fore, that there is no solution to this ill posed problem; fortunately this
turns out not to be the case. The geometry of the system is shown in Figure 4.

Adding (3.1) and (3.2) and integrating we obtain

In the forcing region, and for y > 0 the Fl-py contours, on which 'U, is
constant, are circles with centers at y = I - /F&< , while in y < 0, they
are circles with centers at y = I + 42A - P'/(F . Contours made up of these
lines must close, so that there must be a response in the bottom layer, how-
ever weak the forcing is. This consists of a circulation in the closed stream-
line region, plus a "topographic" response when the zonal current is deflected
by the wind stress induced topography. If 2 I/-F4<F is less than zero
some of the current flows to the north of the closed streamline region, this
seemingly bizarre result will be discussed later, if the flow is superresonant
then this can be avoided. It has been noted that the layer models behL've most
like a continuously stratified model when the flow is superresonant.

Where the F* contours are not closed W' - may be found by tracing
these contours until they leave the forcing region. Thus in qOit is found
that

.4c, . in y < 0 (inside forcing region)

in y < 0 (outside forcing region)

However, where the contours close it is necessary to follow Rhines and Young
(1982a) and use the weak diffusive terms to solve for the functional depen-
dence of %*2 on FtR (3.2) implieq that

ii b, 6 I II + (3.3)
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then integrating inside a closed % contour gives

Substituting in (3.4) from (3.3) it is found that

S CA f -n (3.5)

where the 'AAM+ ' can be taken outside the integral because it is a function
of -*x and therefore a constant on the contour of integration. It is deduced
that, providing the circulation is nonzero

P 9 ~ 2~i~+ constant
R

where the constant is determined at the edge of the closed streamline region,
and for superresonant flow is found to be zero.

Thus

( f t + -1. (9L in y < 0

PV ~t ~ (9(t- ) in y~ '?

inside the region of closed streamlines.

Figure 5 shows the streamline patterns in the top and bottom layers, for
superresonant flow and cases of strong and weak forcing. In the latter case,
if there were no zonal current, there would have been no flow in the lower
layer. It is concluded tentatively that the presence of the current does
indeed allow the wind-driven circulation to penetrate deeper. The interface
height shows the bowl shape expected in a gyre except near the poleward edge
where the response is "topographic". As remarked before, in superresonant
flow the interface adjusts to a similar form to the wind induced topography,
which here is increasing the upper layer thickness, so the interface rises.
This feature is not seen in Figure 3, but as will be seen, if there is strong
enough vertical shear in the current the interface slope due to the shear
dominates the "topographic" response.

The obvious next step is to go to a three layer model to see if the
current-enhanced gyre survives, and how it is modified.

4. THREE LAYER MODEL

It is assumed for simplicity that the layers are all of the same
thickness, but the zonal currents in each layer will bA allowed to be
different, and will be of strength U1 , U2, and U3 in layers 1, 2 and 3.
The quasigeostrophic potential vorticity equations in each layer are

W, + (4.1)
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TL4 + +(t'3  + 1+Oi (4.2)

42=0 '-~~ '. (4.3)

where again R and D are small parameters.

These can be solved in a manner exactly analogous to that used in the two
layer model. Adding the equations gives

which can be solved for the barotropic streamfunction

Then (4.2) and (4.3) imply that

1-2 G0(*~t 9)~ (4.5)

where Q1 and Q2 must be determined from the upstream conditions or, in
regions of closed streamlines, using the weak diffusive terms. A gyre like
response is found in all layers, however small the forcing, providing that
/UF-l < Oand 0/(U1 + U2 + U3)F - 1 < 0. Figure 6 shows schematically

the regions into which the flow divides, as far as what determines the flow in
these regions. In region (a) there is no flow in the bottom two layers and
all the transport, determined by (4.4) is on the top layer. In region (b)
there is no flow in the bottom layer, the flow in the middle layer is deter-
mined by the weak diffusion and the residual transport is in the top layer.
In regions (c) and (d) there 1 . flow in all three layers and weak diffusion
determines the flow in the bottom two layers. In region (e) the flow in the
second layer communicates with the region away from the forcing but in the
third layer the flow is still determined by the weak diffusion. In region (f)
the bottom two layers communicate with the unforced region and the response is
"topographic".

Explicitly the situations arein the regions

( I &(x (- V + 93Fp in regions (b), (c)

(() in region (c)

6 2+ (Y-()in region (d)

1z F(1 (xl-.I(y o1.') + 4Y -(u($4yu3') in region (d)
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-() in regions (e), (f)

L in region (e)

-U~ + ~(iN A P- (Xtt C -yPL- rojZ) in region (f)

2 (p -F&t Uj)(F - MOP

while the barotropic transport

((AU1-i-Lg)+ ~( ~-v rL) in y > 0

'~ (~(~j-V---rO-)in y < 0
The streamfunction in the upper layer '' is given by 4--1. "-*)- -
Figures 6 and 7 show the streamline patterns and interface heights for two
cases, one with equal velocity in each layer U1 - U2 = U3 = U and the
other with vertical shear U1 = 2U, U2 = U, U3 = 0. In the first case
there is a closed gyre in the third layer, which would not have resulted for
these parameter values if there had been no zonal current. In the second

case, where there is actually no current in the third layer, there is still a
gyre in this layer. With vertical shear the wind-driven circulation can
penetrate even to below levels where there is no current! A feature which is
common to both models is that the boundary of the region of closed streamlines
moves poleward as the layers go from top to bottom. This feature was noted by
RhInes and Young (1982a) in their model which is identical to the one on its
equatorward side, but the poleward boundary of their gyre is vertical. Because
of the neighboring current in this model the poleward boundary slopes upward

and equatorward.

In the model without vertical shear the interfaces rise in the poleward
part of the gyre, the "topographic" response, but the vertical shear causes
strong interface slope to be superimposed on this, and the interfaces look
much more like the Isopycnals in Figure 3.

5. CONTINUOUSLY STRATIFIED MODEL

These layer models, with superresonant current velocities, can give
intuition about the continuously stratified case, as shown in Section 2.

Rhines and Young (1982b) have shown that under appropriate assumptions
concerning eddy fluxes, potential vorticity will homogenize on isopycnal
surfaces in regions of closed streamlines in planetary scale flows. It is

therefore appropriate to expect that when solving the continuously stratified
version of the problem considered in Sections 3 and 4, the potential vorticity
inside regions of closed streamlines may be written

q - Q(z) (5.1)
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For completeness it is noted again the equation of motion is

J( + ,q) - 0 (5.2)

where jg

and the boundary conditions are

= WC on z - 0 (5.3)

0(, - 1 bV' on z - -H (5.4)

when the denotes weak Ekman friction, which will be used to determine
the bottom boundary condition uniquely when the streamlines at the bottom
become closed. The geometry of the problem, and the forcing will be exactly
the same as in the layered models in Sections 3 and 4, but only the case of
current velocity (equal to U) independent of depth will be considered.

The flow divides into three regions, one at rest, one where the stream-
lines are closed and the potential vorticity is determined by (5.1), and one
where the streamlines connect to regions of no forcing and the potential
vorticity is determined by

C,-- P._: "+pl 4 : - l~
N11 (5.5)

Unfortunately the function Q(z) is not determined by the problem as
specified (as noted in Rhines and Young (1982)). In the 3 layer model it was
found that, if the current was superresonant, the weak diffusion resulted in
q - 0, in the second layer, which was remote from forcing and bottom drag.
The continuously stratified problem is therefore solved after assuming that
Q(z) - 0, so that in regions of closed streamlines

+ Py 0 (5.6)

Integrating (5.2) with respect to z, it is found that the barotropic
streamfunction -8 , defined by

Io D: (5.7)
"Y -H

obeys the equation

T-gI -z W (5.8)

and is therefore given by

0 ( ( 4- in y> 0 (inside forcing region)

in y > 0 (outside forcing region)

(Xl4M OL_( t - y < 0 (inside forcing region)

- L H y < 0 (outside forcing region)

i ,.
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The constraint (5.7) will be imposed, rather than applying a boundary
condition at z - 0.

By analogy with the three layer model it is expected that the flow will be
divided into five regions; at the equatorward side of the gyre the wind driven
flow will be limited to an upper region of the water column (Region 1). Going
poleward this flow will penetrate to the bottom and there will be closed
streamlines throughout the vertical extent of the fluid. (Region 2 in y > 0,
Region 3 in y q" 0). On the surface the most poleward closed streamline marks
the edge of Region 4, in which above a certain depth the response is "topo-
graphic", and below it there are still closed streamlines. Finally, in the
poleward part of the gyre the response is purely "topographic" throughout the
whole depth of the fluid, the zonal current is diverted to the south as it
flows past the gyre. The flow in each of these regions is now solved in
detail.

Region 1

The circulation is assumed to penetrate to a depth D(x,y), so that (5.6)
holds in 0 > z > - D(x,y). The boundary conditions "4 = = 0 are
applied at the base of the gyre, and with the constraint (5.7) these are
sufficient to uniquely determine the streamfunction f , which is given by

.pAu ( -i- (in the forcing region) (5.9)

and the depth of penetration of the circulation

m~ '13(5.10)

The circulation penetrates to the bottom on the curve defined by D(x,y) - H

which in this case is a circle centered at / .-

Regions 2 and 3

Here (5.6) holds in 0 > z > -H. The boundary condition (5.4) implies
that to leading order in R, -Lk- n(Aij on z - -H, but at this order the
function F cannot be determined. However, integrating (5.6) over the region
enclosed by a closed *, contour, it is found that

0 J(,~-dA R Pf'V"4 dA --0f ~ {s(.1
4(5.11

and it is deduced that = constant on z - 0 in this region.
When D = H, f - 0 on z = -H so

= 0 on z 0 (when streamlines on the bottom are closed) (5.12)
This boundary condition and the constraint (5.7) are sufficient to solve for x-

I6
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The streamline "4 0 (which bounds the closed streamline region) is most
equatorward on z = 0, and In y < 0 consists of a circle centered at I + P U

+F-2N. 3 , which is the boundary of Region 4.
1 2f 2 6<

Region 4

In 0 > z > -D(x,y) the streamlines are open and (5.5) holds, while in
-D(x,y) • z > -H, the streamlines are closed and (5.6) holds. On z - -D -if
and -+ are continuous, (5.13) and (5.7) give two more conditions, leaving
one more needed to solve for-% and determine the unknown D. This last
condition comes from the fact that the surface z - -D is composed of stream-
lines and so . - 0 on z - -D. Defining nondimensional) and JA- by V

-the equation for 1) is found to be

~+ (J-~W~~)i2 - - (5.14)

With the forcing chosen here lines - constant are circles so that the
surface z - D(x,y) is made up of circles with centers a function of z.
In 0 > z >- -D

~co A?,[&- Nc~ (5.15)

where

A - -11y( '/2 (AJ-V )sin't -cool )
B - -Uy( ok ( _p)cosD +sin' )

In -D > z> -H,

When D -N there are no closed streamlines in the whole water column.

Region 5

There the potential vorticity is determined by the upstream conditions so
that (5.5) holds everywhere. (5.6) implies that -4,, = 0 on the bottom, since
it is zero outside the forcing region. With the constraint on the total trans-
port (5.7) the problem is closed and

(A ( t H) (5.17)
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just the topographic response discussed in Section 2. Outside the forcingI region ', just corresponds to uniform flow south of y - 0 and rest north of
y - 0.

Figure 8 shows a meridional section of the gyre along X - 0, with the
various regions considered. Figure 9 shows the horizontal structure of the
surface and bottom streamlines, and the barotropic streamlines.

The problem of the continuously stratified gyre has thus been completely
solved. The following features are worth noting. The wind-driven circulation
inevitably penetrates all the way to the bottom -- this should be compared to
the case with no zonal current solved by Rhines and Young (1982a) where the
wind-driven Is limited in depth. Consequently, provided their gyre does not
penetrate to the bottom (they considered fluid of unbounded depth) that is if

for the forcing considered here, then the gyre with neighboring current pene-
trates deeper than the gyre without the current. The gyre has potential
vorticity which is continuous across its poleward boundary but discontinuous
across its equatorward boundary. Contrasting with the no current case,
however, the poleward boundary of the gyre is not vertical but slopes upward
and equatorward. This effect might be modified however, if there were
vertical shear in the current, which would be an obvious (and simple) sophisti-
cation to consider.

It may be noted that the methods used to solve this problem could also be
applied to large scale flow over topography in a continuously stratified fluid
where the streamlines become closed. Homogenization of potential vorticity
could be used to resolve the functional dependence of.- on q in these regions.

6. MODEL WITH CONTINUOUS VELOCITY PROFILE

One immediate objection to the physical realism of the models presented so
far might be that they have all involved discontinuous velocity profiles. The
upstream profile used before was therefore replaced by one in which the
upstream profile was made up of a region of no motion, a region of uniform
shear, and then a constant velocity profile, as shown in Figure 10. For
simplicity a two layer model was used (equations 21-2,' ). As before the
motion in the second layer is along contours of y given by

t~k' (P (.+ ~-Y--r in y > 0

2f.
In y > 0 the contours are circles centered at C-PdF, in 0 > y> -Yo,
ellipses centered at (P ( AP/a) , and with ratio of semi-major axis to
semi-minor axis 4 C- IANV , and in y < - Yo circles centered at ( 4 .2 il- F*F

It can be shown that at the point V(r>'1,) the ellipse which passes
through this point has gradient (Nf.9/_ Q- Pp , while the circle boun-
ding the forcing region has gradient (ro2 - 12)/1. It is deduced that the

contours must look qualitatively like those in Figure 10, so that some
of the water entering the forcing region must travel to the north of the gyre.

1
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Physically this is reasonable, the flow follows f/h contours in each
layer, the wind stress means that some of these are closed and others pass to
either side of the closed region, just as when fluid flows past an obstacle
some passes to each side. However, there is no evidence that such a flow
occurs in the South Pacific. It should be noted that to do this fluid would
have to move equatorward in the western boundary currents, which are not
included in the model gyre considered here. It is to be expected that if
western boundaries were included, plus perhaps a dynamically balanced Antarctic
Circumpolar Current, the equatorward excursion of water might be inhibited.
However, this effect means that not much value has been gained from the extra
sophistication in the model gyre.

7. SOME REMARKS ON THE EFFECT OF TOPOGRAPHY

It was noted in the Introduction that there is evidence for considerable
interaction between the wind-driven circulation and the bottom topography in
the South Pacific -- not surprisingly if the wind driven flow does,,indeed,
penetrate to great depths.

In one layer large scale quasigeostrophic flow the (barotropic) stream-
function satisfies the equation J

where f is the Coriolis parameter, h is the height of the bottom topography
and H is the layer depth. The wind stress just drives the flow across
potential vorticity contours, which are now controlled by topography as well I
as the gradient of planetary vorticity, and (7.1) can be regarded as a
modified Sverdrup balance equation. The corresponding two layer flow obeys
the equations

'UY4-f3\' ~ 7'L.~.--' (7.2)

T(-%(+ F(41- +1) t ~ +--RT~-4~' h1 (7.3)

which are just equations (3.1) and (3.2) with a topographic term. However,
due to the extra internal degree of freedom no simple equation can be derived
for the barotropic streamfunction; in fact it is found that

and so no simple modified Sverdrup balance applies. It is suggested that
under certain conditions, because of the extra freedom afforded by the
stratification, the net transport may be much greater (or less) than that
suggested by a simple barotropic model with topography.

There are additional complications, consider response to a forcing Wo
which is localized (exactly as in previous sections). It is known that the I
response will be confined to the upper layer unless the potential vorticity
contours close in the lower layer. If there is no response in the lower
layer, then '*a is known, and 4,'* unless contours of 1-0B% 1 close.
(Note the topographic influence). Inside these closed contours, to leading I

I

6- - - iI I I I I I I I I I I I i l - - , - i ii . . . -
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order in R and D

and integrating (7.3) over the region bounded by a closed streamline in the
lower layer implies that

and hence from (7.5) that

R A R V + P,4

T -- (7.b)

This equation for A(- 1 ) is awkward to solve due to the topographic term;
indeed a closed solution may not be written down. One way of approaching the

problem might be to solve iteratively, perhaps assuming weak topography, such

a solution is needed to solve the problem and perhaps highlight the effect of

topography on the transport.

There is evidence that the Antarctic Circumpolar Current is deflected t-

the north when it crosses the East Pacific Rise, thus perhaps bringing a zcnal
current into a region of strong wind stress curl. This motivated investiga-

tion of the problem with the geometry shown in Figure lla, with a current to

the south of a wind-forcing region, but with topograhy to divert the current

into the forcing region.

This is an example of a problem which is not well posed.' -In the 2 layer

model, if 0 </UF < I , then the response to topography is such that in each

layer the disturbance is of the same sign, but the magnitude of that in the

upper layer is larger. As shown in Figure llb this results in the streamlines
in the top layer leaving the region of nonzero velocity in the lower layer.

When they enter a region of zero velocity in the lower layer they must follow

y - constant lines, and so a streamline may be followed from x- -an , turn

northwards, and then go back to x=z-a, meaning that the velocity profile

assumed may not be posed. However, a solution to the large scale quasi-

geostrophic equation is

H OaF-zHI3, q L4 -

n <v f 0 - WO)

-aaF
I+
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and -*L 0>J /k-2 I
where h = h(x) 0 (and so represents a ridge) and h(x) 0 as x
As shown in Figure lib, this flow field consists of eastward flow over the I
topography in both layers, with some fluid in the top layer returning wk-stward
over a quiescent second layer. Of course this is without wind forcing and
seems to be an example of eastward flow being blocked by topography. It is
interesting to speculate whether such a flow could be set up (e.g., in the
laboratory) but this example still serves to show that the deceptively simple
large scale flow equations have solutions with a rich and complicated struc-
ture .

CO NCLUS IO NS

In summary, the Rhines and Young (1982a) theory of the wind-driven
circulation has been used to show that the presence of a zonal current
poleward of a region of nonzero wind stress curl will increase the depth of
the resulting gyre, and in particular the presence of the Antarctic Circum- I
polar Current is believed to be the reason for the deep wind gyre in the South
Pacific. Such deep flows are certain to be strongly influenced by topography
and it would be well worth investigating this effect in detail.
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MEAN MOTIONS INDUCED BY BAROCLINIC INSTABILITY IN A JET

Theodore G. Shepherd

1. INTRODUCTION

In the development of the theory of wave, mean-flow interaction, 'non-
acceleration' theorems (Charney and Drazin, 1961; Eliassen and Palm, 1961) have
provided useful results concerning the extent to which waves can alter a mean

flow. In particular, such theorems highlight the fact that in many cases of
interest, waves can induce a weak mean flow which exactly cancels the effects
of eddy transports, leaving no net effect on the initial mean flow. In such
instances, usually involving a steady, conservative wave field, a description

of the situation in terms of eddy fluxes of heat and momentum and weak zonal
mean flows would seem to be an unnecessarily cumbersome way of saying that
'nothing is happening'.

Even when the cancellation between eddy and induced mean flow effects is

not zero, however, it may still be desirable to take account of the cancella-
tion in the interests of a more succinct description of the dynamics. In the
context of the atmospheric circulation, this desire has led to the 'Transformed
Eulerian-Mean' (Andrews and McIntyre, 1976) and the 'Generalized Lagrangian-

Mean' (Andrews and McIntyre, 1978).

A particular example of a situation in which the non-acceleration theorems

do not hold, and one of crucial importance to the atmospheric circulation, is
that of a growing baroclinic wave - in this case, it is wave transience which
provides the irreversibility. Following the initial studies of Charney (1947)
and Eady (1949) the subject of baroclinic instability has certainly received a

great deal of attention, much of it related to the way in which growing baro-
clinic waves affect Eulerian-mean profiles of wind and temperature, and to

their role in the atmospheric general circulation. However, the studies have
generally been confined to the domain of Eulerian-mean statistics, and have

thus suffered to some extent from the implications of the non-acceleration

theorems mentioned above.

Recently, Uryu (1979) has examined the Lagrangian-mean motion induced by a

growing Eady mode, and has found it to be strikingly different in both charac-
ter and magnitude from the corresponding Eulerian-mean motion. In this paper,

Uryu's work will be extended to baroclinic waves resulting from a basic flow
with both meridional and vertical shear, as such a situation is more applicable

to the atmosphere and can allow for a variety of different effects. In addi-
tion, the Transformed Eulerian-mean circulation will be examined. However,
Uryu also computes the Lagrangian-mean motion due to the ageostrophic part of
the wave. That is not necessary for these calculations, and so will not be
done here.

Since the phenomena under consideration are mid-latitude synoptic-scale

baroclinic disturbances, the mid-latitude quasi-geostrophic beta-plane channel
will be employed. In general, the instability problem for an arbitrary baro-
clinic parallel flow U - U(y,z) is non-separable, and is thus difficult to
solve. The earliest studies of Charney (1947), Eady (1949), and Phillips

(1954), of course, allowed only U - U(z). Progress for U - U(y,z) can be made
in a variety of ways. One method is to use a perturbation expansion
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assuming weak meridional shear (e.g. McIntyre, 1970). Alternai:vely, one may
use a discretized representation in the vertical coordinate, the most cele-
brated of these being Phillips's two-layer model (1954). For reasons of bot,
generality and simplicity, the latter route will be taken in this work.

2. THE ALGORITHM

(a) Solution of the instability problem

Using standard quasi-geostrophic scaling (Pedlosky, 1979), the govern-
ing equations for the inviscid two-layer model are those of conservation of

quasi-geostrophic potential vorticity in each layer:

' Zr(, Q,) 0 oIa)

- 0L :T("'., QL) o (lb)

where Ql ffi  -+ r 4 , ) and Q2 ffi  +I3'0 +F(±4') . Here
F is the Froude number L1/L , L is the internal deformation radius, the
layers are taken to have equal depths AZ = , and 4 i(i -1, 2) is the

geostrophic streamfunction for each layer. The vertical velocity tj.fj is
defined at the interface, and satisfies

CF (1c)

where is the Rossby number and ."-- (4'] " Boundary conditions
are as follows:

(i) w = o at z i o,1
(ii) periodicity in x ;(d)
(iii)v = o at the channel walls y - ',-W

To investigate the linear instability problem, consider a basic state
zonal jet U1 = Ul(Y), UZ = U2(Y). Then if f,(1 :-f1u J ) is the
basic state streamfunction, where the perturbation stream-
function L . satisfies the linearized perturbation equations

+ +({,,,,) ,,o (2a)

where P,-

_,_ F( -
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and Qi +Iti (i - 1,2).

Introducing normal-mode trial solutions of the formI
where k E . , equations (2a, b) may be cast in the form

(WO9-C)[ 7, '4, ( 1 4). ) - 0 (3a)

F4--, k1 + (3b)

subject to the boundary conditln

k = 1' .'- A =Ir -W(3c)

The perturbation velocities are evaluated geostrophically as

Now, equations (3a, b,c) provide an eigenvalue problem for the complex

phase speed c: if Im(c)=EC> o, then the eigenmode is unstable. In general,
the problem is still not solvable analytically. Two possible analytical
approaches are those of a perturbation expansion in terms of some small para-
meter such as the meridional shear (e.g. Stone, 1969; Simmons, 1974), or a
severely truncated set of meridional modes (e.g. Yamagata, 1976; Kim, 1978).
However, a numerical solution of the eigenvalue problem is easy, and does not
suffer from the restrictive assumptions of the analytical methods. Consequent-
ly, numerical methods will be employed in the present work.

First, assume that there is no meridional shear in the lower-layer jet;
this will simplify the algebra without compromising the dynamics unduly. Then
without loss of generality, one may set U2 (y) - 0. Second, coisider the
specific case UI:U +z I^coiLt (11 Notethat when ff - 0 , the jet is zero
at the channel walls; for pos'Ptive 0 and U, it is everywhere westerly.

For a cosine jet, it seems natural to choose a spectral representation of
the eigenmode 4 (y); this also has the advantage of maintaining a simple
relationship between the vorticity and the streamfunction. In order to
satisfy the boundary condition (3c), consider the truncated spectral expansion

Note that for the symmetric jet considered here, the problems for the symmetric
modes (Ai  0 0) and for the antisymmetric modes (B = o ) can be treated
separately. Details of the solution procedure are given in the Appendix.

I.
I
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(b) Eulerian-mean (EM) circulation

Assuming that an unstable mode has been obtained from the elgeuvaluc
problem, the Eulerian-mean circulation induced by this growing wave can b,
calculated. In general, there will be more than one unstable mode for a given
k, and one would tend to examine only the most unstable of them.

If the unstable modes are assumed to have amplitude a, then the zonal-mean
flow change will be o(a2 ), and will be given by taking the zonal avrage of
equation (1) to obtain

where the overbar denotes a zonal average. Boundary conditions arc

-~ -- - A at -j' rr  w (5c)at -el t

from the momentum balance. To evaluate the right-hand side forcing correla-
tions of (5a, b), the rule

A r

is used. Since the time dependence of such correlations will be r

introducing the solution form

enables (5a,b) to be written

2L , "4 .7(4~J . "c~.4 4,)} (6a)

subject to r (C

Now, for both symmetric and antisymmeteric modes, the right-hand sid, of (6a,
b) will consist of series of terms sin ( ) x cos ( ) and can thus be
expressed as a single series of the form 9 ( ) sin my. Note that to
preserve accuracy, the truncation wavenumbrp must be doubled. Then equations

(6a,b) take the form

. ' (7b)
5v%.
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where, for example, in the case of an unstable mode z< A, ,-n(w-)

4 , (i,: " {-.)(,-.,"1," T IA{"")'.,'. + F(,.- ) 4A'""' , , -T~~')I- A!,M t "A (A *

In the interests of brevity, this will be the only formula of this type
presented. The others are similar.

Now, the particular solution of (7a, b) is
2W

(8a)

where (o, ( !':-44F) ,) F (8b)

To this must be added a solution of the homogeneous version of (7a, b) in
order to satisfy the boundary condition (6c). The full solution Is

In the upper layer (i 1), that C at 1w is self-evidtnt
from (8c) and (8a). On the other hand,

:tw

and this is not exactly zero. Analytically, however, ought to vanish
at I = ,-"f" if A does. To see this, adding equtions (5a) and (5b)
together eliminates Ie baroclinic terms, leaving only

z9~~ -11 (Z7U)V - )1 (&Z:LvLJ

Integrating once in y, and recognizing that vi = 0 at y = !', yields

and thus

1 +
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It is seen that the extent to which the right-hand side of (l) does not
vanish, is a measure of the error involved in making a finite spectral
truncation. Define

(Error),

From (8c), the Eulerian-mean zonal acceleration is given by

Now, the Reynolds stresses can be found in a similar way. For
appropriately defined coefficients D j,

- k U2c't J V&,. (Ila)

L4 V
and _ k(11b)

Analytically, both u i and j (uivi) ought to vanish at y -
for these geostrophic velocities. The form of (lla, b) implies t~at the former
will be satisfied exactly, but that the latter will be only approximately true.
Consequently, introduce another error measure

(Error)
L

The mean zonal-momentum balance for this system is

and thus by using (10) and (llb), the EM meridional velocityv i can be
obtained. This is, of course, an ageostrophic velocity, as vi 0
geostrophically. Within the accuracy of the computation, rl -

Finally, "I's can be obtained by using the continuity equation evaluated at
this order. Assuming layer depths of Az.- - , and using the fact thati - o at

z . oPl,

together imply that (13)

It can be seen from the form of the expressions that -Ot , "A_:i and
vi are represented as a series of cosines and will thus be symmetric in y,
while and uiv i will be antisymmetric. J

I
!
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(c) Transformed Eulerian-mean (TEM) circulation

As described in the Introduction, in many situations of interest the
picture of wave, mean-flow interaction can be unnecessarily complicated when
cast in terms of conventional Eulerian zonal-mean statistics. The transformed
Eulerian-mean formulation introduces a 'residual circulation' defined, in
pressure coordinates, by

Vi -- -7[- (14a)

z-a (14b)

where 0 equals potential temperature, in terms of which the inviscid zonal-
mean momentum equation takes the form

r = 7T'F (14c)

where F, called the 'Eliassen-Palm flux', is given in the quasi-geostrophic
approximation by {F= , with

(14d)

(see Zdmon et al, 1980). In terms of the two-lay:-r model, the equivalent
expressions are

(15a)

and 04 (vL)+(i' vLL (15b)

while t is obtained from continuity, since is nondivergent:
-- (15c)

The correlations on the right hand sides of (15a, b) are computed in the same
fashion as described in section (b) above.

Now, the advantages of the TEM formulation are described in some detail in
Edmon et al. (1980), but a few points are especially worthy of note. The
first is that when the nonacceleration theorems are valid, V.r- O and
v, K , and "' may all vanish; this justifies the use of the term 'residual
circulation'-n describing ( *,w), as it is that part of the mean meridional
circulation which is not cancelled by steady, conservative wave effects.
Similarly, V-F can be seen as representing the 'true' forcing of the mean
state by the eddies, and as corresponding to transient and irreversible eddy
processes.

A second feature is that under the quasi-geostrophic assumption, 7- is
equal to the northward eddy transport of potential vorticity,

(V ~ 7 t (16)

This is particularly useful because the sign of vi.i can often be antici-
pated frop hysical arguments. For example, for growing disturbances one
expects vi .i to be downgradient (Rhines and Holland, 1979). In the
present study, the cases to be considered will generally have >0 and
1, , whence one would expect the E-P flux to be divergent in the lower

layer and convergent in the upper layer.
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The TEM heat equation is far simpler than its EM counterpart, and has the
advantage of being eddy-free. The two are given in pressure coordinates as

+ Z Q (17a)

(17b)

where L is diabatic heating. When G= 0, heating (or cooling) of the mean
state is reflected solely in the adiabatic heating (or cooling) associated

with sinking (or rising) TEM motion. For the case of baroclinic instability,
the unstable motions obtain their energy by means of a northward transport of
heat which reduces the available potential energy of the mean flow. Viewed in
terms of the TEM circulation, this can only be accomplished by heating in the
north through negative T*, and cooling in the south through positive !*, that
is to say a thermally direct TEM meridional cell. The EM circulation has no
such 'a priori' constraint.

Finally, the TEM meridional velocities may be thought of as being in some

sense 'mass-flux' velocities. This can be seen by considering a multi-layer
fluid with layer depths hi = Hi + hi, where under the quasi-geostrophic
assumption ",j. o(f) • The mean layer depths Hi are constant. Following
Rhines and Holland (1979), the mean momentum equation in each layer may be
expressed either as

p P, (18ai)

or alternatively as

Judging from the right hand sides of equations (18a, b), the first corresponds
to the TEM momentum equation while the second corresponds to the EM equation.
Consequently, Vi* may be identified with -, h,v , a mass-weighted
velocity. In some sense I,4, is a quasi-Lagrangian quantity, because the
layer interfaces move freely in the vertical.

(d) Generalized Lagrangian-mean (GIM) circulation

A more radical approach to eddy, mean-flow interaction than the TEM formli-
lation, is provided by the concept of a Lagrangian mean. Strictly speaking, a
Lagrangian mean is a mean following a particle trajectory, on the basis of

which it enjoys the conceptual advantage of being eddy-free. However, one
would generally like to have mean quantities defined as functions of spatial
and temporal Eulerian coordinates, yet which embody some characteristics of
the Lagrangian mean. It was to this end that the Generalized Lagrangian-mean
was proposed by Andrews and McIntyre (1978).

In its most general form for finite-amplitude disturbances, the GLM

formulation is unfortunately quite difficult to apply. But for disturbances
of small amplitude a, the Lagrangian displacement of fluid particles ';}' .,

is given in terms of the Eulerian fields as

. + =U, + G (19)
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where W' is the perturbation velocity. From these particle displacements, the
generalized Lagrangian-mean is defined as

-L L

c U - c (20)

and represents a mean along a line of fluid particles distorted by the waves.
A Taylor expansion of (20) with respect to 'I leads to the small-amplitude
approximation for the Stokes correction

4) 4~ ~ 1.vo' L 1(v~4 (21)

Equations (19) to (21) were provided in Andrews and McIntyre (1978, Section 2).

For the present investigation, the quantities of interest are -,43
, . .The Stokes corrections for these terms, assuming a basic stati

mean fow U1  U(y), U2 - 0, are as follows, to leading order in wave
amplitude and Rossby number:

R N, 7A(22b)

Vjr) (2 2c)

7 l (.C2 2d)

W-t j7.f(22e)

The terms involving vertical displacements I are of a higher order in C for
this quasi-geostrophic system, and have consequently been neglected. The
'flux form' of the displacement-velocity correlations is obtained by consider-
ing that

but V.-- 0 (Andrews and McIntyre, 1978, section 9). The expression
for could equally well have been in terms of the upper-layer displace-
ment , but that would have involved a more elaborate computation.

It is seen from (22 a-e) that the only particle displacement fields needed
are those of vi, and 1. ; they are obtained from (19), namely

;k:i' I)-C) 1, Z V,- kk-ti (23a)

_;kc L -- V - IkL (23b)

It then follows that

L ik. ie -

It e

4Z(2a
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LA e re T4
7 (24b)

I kcj
___ -L: 1(4 ?{4 4
It, L (24c)

(24d)~-L, L

+ 0,' 4

- l.6 z~{:4 (2 4f)

The right hand sides of equations (24 a-f) are computed using the procedure
described in section (b) above. Products such as j ,* will be repre-
sented as cosine series and will thus be symmetric in y, while products like

II74A will be antisymmetric in y. When applying (22a) and (22c),
differentiation of (24a) and (24c) must include differentiation of U(y), but
it still turns out that all Stokes quantities are either symmetric or antisym-
metric due to the symmetry of U(j).

It should be mentioned that while and and W-4 and . , are
formally of the same order in amplitude and Rossby number, in general -, is
one order larger in Rossby number than vj. Thus, the Lagrangian-mean V is
only formally correct to leading order in Rossby number; to include Vi while
neglecting terms involving either the vertical particle displacement or ageo-
strophic corrections to the stability problem would he inconsistent.

Finally, a remark ought to be made concerning the relationship between the
TEM circulation (v*,w*) and the GLM circulation ( ; ,L ). For steady,
conservative waves, the two circulations are identical and, indeed, are often
zero. Because of the 'eddy-free' (although forced) form of the TEM equations
(e.g. as given in Edmon et al. 1980), one is tempted to view the TEM as having
at least some of the characteristics of the GLM. But they are really quite
different concepts; not the least striking is the fact that while the TEM
circtlation is nondivergent, the GLM circulation can be (and usually is)
divergent or convergent (Andrews and McIntyre, 1978, section 9).
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3. APPLICATIONS TO THREE 
CASES

A

Case A will be simply the Phillips model, namely u 1 1, u - o, with
'atmospheric' values of 1 1, F - 4. This can be solved analytically, and
the Lagrangian-mean results can be compared directly with those of Uryu (1979);
even though Uryu's study uses the Eady model, the Eulerian-mean circulations
associated with the two models are very similar indeed, and so one might expect
the Lagranglan-mean circulations to compare as well.

Because of the observational fact that mid-latitude baroclinic storms tend
to be baroclinically growing and barotropically damped, one set of experimental
parameters will be chosen to ensure baroclinic instability and barotropic

stability. This can be done if the northward mean potential-vorticity gradient
is of one sign within each layer, but of opposite signs in the two

layers. For ,, )Z colNL6

-- F( 44 + %A(Fti I s2 a

- -'F -. 0 i(25b)

For positive settings of the parameters, it is evident that one needs

> /)L-> <(3 -+F FA

Qonsequently, case B will have U = 1, U = 1, as well as = , F = 4, which
easily satisfies (25c).

Finally, a case in which (25c) is not quite satisfied, although Qly > 0
and Q 2y.v 0 over most of the domain, is that of U = 0, U = 0.5, / = 1,
F - 15. This case, C, has a jet which vanishes at the channel walls and is
very similar in shape to one of the cases studied in a numerical instability
calculation of Simmons (1974). Cases B and C differ principally in the
deformation radius (a factor of two), and in the fact that Qiy changes sign
within each layer (though only barely) in case C.

The jets for cases B and C are shown in figures la, b. For easy reference,
the cases are summarized in table form below:

- Most unstable
CASEI 1 F U G' U Cv) Mode at k = Cr ICi
A 1.0 4.0 1.0 i 1 2.0 7.34 -. 27

S1.0 4.0 10 .0 1 + 2 cos2(j) 2.0 1.08 .54
1.0 15.0 0 0.5 cos2(i) 3.5 .39 .23

In all calculations, the Rossby number F is taken to be 0.1.

(a) The Phillips model: Case A

The instability problem for this parameter setting was solved long ago by
Phillips (1954), who also computed the Eulerian-mean circulation associated
with the growing wave.

4
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Growth rates, determined numerically, are plotted as a function of zonal
wavenumber k in figure 2; it is seen that the most unstable mode is found ro
have meridional structure 4(0.( ,"-j) (i.e. the gravest mode of tile systecm)
at approximately k - 2.0, and is handled exactly by the spectral representa-
tion. Higher modes have growth rates which are comparable, and it is impos-
sible to predict from a linear calculation the ultimate 'winner' in any
competition between growing modes; however, the mean circulations associated
with the higher modes are simply multiple copies of those from the gravest
mode, and hence, since the mean flow is independent of y, there is no nixed to
consider the higher modes.

Analytically, the Phillips model allows unstable modes of a single
meridional wavenumber, the most unstable for k - 2.0 being given by

~~. e~t(C) [0z. (2 6a)

(Expressions for the Bi's to within a constant, and for c, are given in
Phillips (1954)). The geostrophic velocities are then

2- h -,+)))
. 1) e and (26ch

For such single mode solutions the Reynolds stress vanishes exactly and the
spectral coefficients Ej' and Gi of equations (7) and (8) turn out to be
antisymmetric in (z--). In fact, most of the algebra of section 2(b) turns
out to be unnecessary, and one finds that

._ , -- ' . ( I, V <, A 4\ F

(26d)

'L 5~q 40C~ '?~L~~'- c~ii-~~ (26e)

where A 5L s hLf

Since A is positive for a growing wave, equations (26d,e) represent a thermally
indirect meridional circulation about the center of the chariel with narrow
thermally direct cells at the walls; this situation is shown in figures 3 and
4, and is understood to be responsible for the Ferrel cell in the observed
atmospheric mean meridional circulation. The zonal acceleration _- is
due solely to the Coriolis torque, and over the central part of the Nannel
(where the disturbance amplitude is concentrated) it is positive in the lower
layer and negative in the upper layer. This, of course, leads to a weakening
of the vertical mean wind shear in the center of the channel.

Applying equations (15a-c) in this case to obtain the TEM circulation, it
turns out that

-L?) (# 2 NA (2 7a)IZ 27b)

L
• iA
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It is evident that the ratio 2 18 for F - 4, so the TEM
circulation dominates the EM circulation; moreover, it is of the opposite sign

in the center of the channel. Figures 5 and 6 show the TEM meridional circula-
tion to be a single thermally direct cell, which agrees with the direct cell

over mid-latitudes found in the TEM observational analysis of Edmon et al.
(1980). Equation (27a) also implies that the E-P flux vector will point

directly upward, and will have its greatest magnitude at the center of the

channel. That F has no horizontal component is simply a reflection of the fact

that in the Phillips model of baroclinic instability, there is no momentum

flux. Note that since (7-F)i/. • 0 * i - 1,2, the potential vorticity

A flux is everywhere downgradient.1

As for the GLM circulation, equations (22a-e) apply but with the

simplification that U(y) 1. The meridional particle displacements are

(28a)

'4 - Col "-e - ,, (28b)
44-c)

from which the Stokes corrections are simply

-- R e (28c)

Ce, c(28d)

A (28e)

- ~~ V 2,g 1
2  (28f)

-:( ',.- (2 8g)

An interesting result that is immediately evident from equations (28e,f) is
that 'O is convergent towards the center of the channel in each layer.

This was also found by Uryu (1979) for the Eady mode, and is indicative of

horizontal particle mixing.

The GLM meridional circulation, obtained by adding the Stokes corrections

to the Eulerian-inean quantities, is shown in figures 7 and 8. The vertical
particle motion is upward in the south and downward in the north, as would be

expected in order to release the available potential energy of the mean flow,
and tilt the potential temperature isotherms back to horizontal. Mean particle

motion is thus upward and northward in the south, and downward and southward in
the north, demonstrating motion in the 'wedge of instability'.

It should be noted that is one order larger in t than

so the Coriolis torque associated with cannot be causing the zonal
acceleration. In fact, in the Lagrangian-mean momentum equation Z is

balanced geostrophically to leading order in j by the divergence of
radiation stress,

as pointed out by Uryu (1979).
q

J
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The GLM meridional circulation from the Eady model, as calculated by Uryu,
is shown in figures 9a and 9b. v4'(-) at z I is identical to in

the Phillips model, but V in the Eady model is affected signifitantly by
higher-order terms which are symmetric in y.

-_ particularly striking result of Uryu's calculation is the fact that
-. and - tend to be of the same magnitude but of opposite sign,

leaving a weak ' which, in the center of the channel, is positive in the
upper part and negative in the lower part of the flow. The results of the
two-layer model calculation are very similar to those of the Eady model;
figures 10 and 11 show the three quantities -- , , , and ! - I In
the upper and lower layers, while figure 12 reptoduces tryu's corresponding
results. Note that although must vanish at the channel walls, ?-
need not. The smallness of in the central lower layer is particularly
remarkable.

It is interesting that although t.Jj seems to be a good substitute
for - , v and V are really quite different; thus one must bE
cautiou's when trying to infer the GLM from the TEM.

(b). A zonal jet: Cases B and C

With an upper jet which varies in y, no single meridional mode is an
eigenfunction for the instability problem. A truncation wavenumber NO will
be consid red adequate if (i) increasing N beyond No does not alter the
important spectral amplitudes by more than 1%; and (ii) the relative error
measures defined in section 2(b) are less than 10-3 .

A plot of growth rates against zonal wavenumber k is given in figure 13 -or
case C; case B is similar in character. It is seen that with meridional shear
in the mean jet, the most unstable symmetric and antisymmetric modes are very
close to each other in growth rate, and are substantially more unstable than
the next ones down. Consequently, both modes ought to be cons-idered,
especijily since in the atmosphere one does see baroclinic storms of both a
symmetric (e.g. an Isolated cyclone) and an antisymmetric (e.g. a cyclone,
anticyclone dipole) character.

For case B, the most unstable modes occur near k = 2.0, and the criteria
mentioned above are satisfied for a truncation of N = 5. The amplitude and
phase of the symmetric mode are shown in figures 14 and 15 (note that the
phasE is only defined within mod (7V ), and are rather similar to those found
in a similar computation by Simmons (1974). The westward tilt of phase with
height Is evident, as is the distortion of phase lines by the jet in the
'obvious' (i.e. advective) sense; this latter effect was also found by
McIntyre (1970) for the perturbed Eady problem.

The antisymmetric mode amplitude for case B is shown in figure 16, and Is
seen to be concentrated in the central part of the channel, though not, of
course, right at the center. The phase is very similar to figure 15. Finally,
the symmetric mode amplitude for case C is given in figure 17; the smaller de-
formation radius in this case confines the instability amplitude very strongly
to the center of the channel. The scale of the wave amplitude is intermediate
between that of the jet, 2w , and the deformation radius, "'W in this
case, in agreement with Simmons (1974). Similarly, the phase variation occurs
over the same scale. For case C, a truncation of N - 15 is required to satisfv
the convergence criteria for the most unstable modes at k = 3.5.
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Generally, the various mean circulations of case C are very similar to
those of case B, except for being concentroted more strongly in the center ot
the channel. The only exception is with QL , which will be remarked (in
later. Otherwise, the circulations for case C will not be shown.

The induced Eulerian-mean circulation is found via equations (10) through

(13). - and fv, for the two layers art shown for the symmetric mode of
case B in figures 18 and 19, respectively. Unlike the Phillips model, here
the Reynolds stress does not vanish, and the zonal acce lerations in the two
layers are not equal and opposite. The upper layer Reynolds stress exceeds
that of the lower, but the net acceleration Is greatest in the lower layer
because of the effect of the meridional circulation - which is shown in

figures 20 and 21. These results all agree with those of Simmons (1974). As
in case A, the EM circulation is a strong central thermally indirect cell
bounded by two thermally direct cells, although here the activity tends to be
kept away from the channel walls.

The antisymmetric mode of case B gives an EM merldional circulation which

is almost exactly the reverse of that from the symmetric mode: a strong central
direct cell bounded by weaker indirect cells, indicated by ', in figure 22.

The Reynolds stresses are similar for the two modes, though they have their
maxima further away from the channel center for the antisymmetric mode. As for

the zonal accelerations i , shown in figure 23, they are quite different.
In figure 18, ' and ±__ seem to be of similar form; but in figure 23

they are strikingly different in character, and are of opposite sign in the
center of the channel.

The TEM circulation, computed using equations (15a-c), is shown for the
symmetric mode of case B via V and -,' in figures 24 and 25. As with
case A, it represents a single large thermally direct meridional cell, though
once again the activity is confined more to the center of the channel. In
addition, although formally V and v , and ;r and L, , are of the
same order in E , in fact the TEM exceeds the EM by about an order of magni-
tude. The TEM circulations associated with the antisymmetric mode are simply
two symmetric mode circulations side by side, and so are not shown. The diver-
gence of E-P flux, shown in figure 26, is negative in the upper layer and
positive in the lower, as in case A. But here the flux vectors point both
upwards and outwards from the center of the channel, reflecting the importance
of momentum fluxes in this problem. Spreading out of the E-P flux vectors with
height has been observed in the atmosphere by Edmon et al. (1980), although
they ascribe it to nonlinearity rather than to meridional shear in the mean
flow.

The GLM vertical velocity '4, for the symmetric mode of case B is shown
in figure 27; once again it seems to agree very closely with W in both
magnitude and shape, and exhibits the available potential energy-releasing
particle motions associated with baroclinic instability.

-L

As for the meridional velocity V; , although it is always convergent
towards the center of instability activity, its nature varies consider&bly
from case to case. Figures 28 and 29 show ' " from the symmetric mode of
cases B and C, while figures 30 and 31 show the same thing for the antisym-
metric mode. The lower layer VLL has a simple convergent character and is
limited in extent to where the instability amplitude is concentrated, vanish-
ing well away from the channel walls. But the upper layer v has contribu-
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tions arising from the meridional variation of the upper layer jet, and it
thus exhibits a variety of behaviors. For the symmetric mode (figures 28 and
29), the maximum strength of 7, is much less than that of !" , ranging
from 15% of ;V,' for case B to 40% with case C. In addition, there is a
secondary maximum of convergence or divergence between the instability
activity and the channel walls; in case B this equals the primary maximum in
strength and is close to the walls.

Similar results hold for the anti-symmetric mode (figures 30 and 31)

except that there are two centers of instability activity instead of one.
However, the velocities in the two layers are closer in strength than with the
symmetric mode, and unlike the symmetric mode, the maxima may not be aligned -
figure 30 is a particularly clear example of this. It would seem rather
difficult to make any general conclusions about the G1M , , save for its
convergent character already noted.

Recall that in case A, the Stokes correction - tended to oppose the

Eulerian acceleration ¢4 , leaving only a small residual .$, of oppo-
site sign to _ , This was possible in part because - ' was anti-
symmetric about ( Z- ), being forced only by V . But in cases B and
C, it has already been seen that 4Z-t obeys no such rule, and that in fact
for the symmetric mode, ' and are similar in both magnitude and sign.
Consequently, It should come as no surprise that the GLM accelerations C_

for cases B and C ar extremely different from those for case A. In figurh
32 and 33, - , , and " are displayed for the upper and lower
layers, respectively, from the symmetric mode of case B. In the upper layer
the Eulerian and Stokes accelerations act in concert, producing a very stronv
net Lagrangian acceleration in the center of the channel; this is completely
counter to Uryu's (1979) finding for the Eady mode. Although the Eulerian and
Stokes accelerations are of opposite sign in the lower layer, the cancellation
is nowhere near complete and the remaining Lagrangian acceleration is still

substantial, though nothing like the acceleration in the upper layer. This is
also a departure from Uryu's results.

The fields from case C are very similar to those of case B for these quan-

tities, aside from being confined more to the center of the channel. But the
antisymmetric mode of case B is worth looking at; this is done in figures 34
and 35. In the upper layer (figure 34), the Eulerian and Stokes corrections
neither cancel nor reinforce each other, for they are out of phase. The only
exception is at the very center of the channel, where , is nearly zero.
Generally, is positive where the wave amplitude Is strongest, and nega-
tive just to the outside of that point. As for the lower layer (figure 35),
the picture is essentially the reverse of that for the symmetric mode
(figure 33), with the Stokes acceleration still winning over the Eulerian.
But here ", is nositive in the center of the channel, whereas with the

symmetric mode it is negative.

To calculate LA , equation (22a) shows It to be made up of two parts:

one, the conventional Stokes drift term :--i) ; and the other, the
term .rf which is usually neglected. The relative importance of
these two terms is shown in figure 36 for the symmetric mode of case B; thm.
situations with the other modes are similar. The second term, while not

negligible, is certainly of secondary importance; it has its maximum amplitude
at the center of the channel, where both 1Uy.,J and 17, are maximal.
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APPENDIX

Substituting the elgenmode forms (4) into (3a,b) with the specific form
,_ 2 ?tA .7('') , t/,L ) , one obtains for the upper

layer

;-tX,,-,X ,i " L" ,[,4),1 FAI FI.

(F+ (A 1)

The equation for the lower layer is similar, except that the indices 1 and 2
are reversed, (1) is replaced by [-c], and (2) is replaced by [P-F(5-b)-FrL1"sy]
Then using the identities

to compute the interactions between modes, (Al) reduces to the set of N
equations

-- 1FO "- i6A - k' (QAA

~4 ~ F~~LA A4'- cfk FA r.)

for each m = 1,..,N, as well as a corresponding set of N equations for BT-
with m replaced by (m - - )o There is also a similar set for the lower layer.

As nentioned previously, the problems for the A" ¢ and the ;

are separable. If one transforms coordinates o

IT¢-. F,. ) rA,A- FA[
r?;~ C (',''F) As7 -lFA,"

then the eigenvalue problem can be written in matrix form as

h ,' : v % (A3)

whe re

"L ~ PLi " ?l) < " L) , .
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corresponding to the antisymmetric and symmetric problems, respectively, ani
is 'block tridiagonal':

im - < ,

There are many well-established numerical library routines for solving
matrix eigenvalue problems of the form (A3). To be satisfied with the
numerical solution, one would want the spectral amplitudes 1A."I and
to decrease rapidly with increasing m, and for the important amplitudes to be
independent of the truncation N.
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ISOLATED 2D VDRTICES IN THE ?ESENCE OF SHEAR

Mar K Swenson

INTRODUCTION

There are prominetnt features of geophysical flows, such as the
Red Spot of Jupiter, atmospheric blocking patteri s, and oceanic
current rings, that are strongly nonlinear, coherent features witr
planetary scales. i recent years, the quasi-geostrophic equatiors
have been investigated in the search for exact solutions that are
steadily propagatitg, strongly nonlitnear and form preserving (Stern
1975; Larichev & Remzik 1976; Flierl et al. 1980). these being the
apparent properties of the geophysical coherent feature-. The appli-
cability of these modons to flows of geophysical ititerest is still iii
question. How might they be generated ir realistic flows? Are thtry
stable to finite amplitude perturbations? Car they stay cororeot i
the presence of a nioni-utniform mean flow?

This report will be concernel only with tUie latter question. It
is Wowmi that atmospheric blocking patterns a3d the Red Spot are
foutid in regions of significant horizortal :rear. Tt is tne initen.-
tioni of this report to investigate the robustness of the modoti solu-
tio.is in the presence of horizontal shear. As a first step, we have
neglected the influence of the 0-effect so that the important bal-
ances can be isolated. Ac orJitigly, we f c us attention on at ideal,
two-dimensional fluid on the f-plane.

FORMULATION

The vorticity equation for this problem is

' vx -0 '192+i) =0 (1)
where J is the Jacobian operator and 'Y is the stream function.
Steady solutiotns satisfy -(i-jglq) o , which implies that

F('f) where F is ani arbitrary function.

Dn regions where the stream lines extend to infinity, the bouti-
dary conditions at infinity determine the relationship between vorti-
city 'vorticity B W = 92'A ) and the stream futction. i closed
strea'lite regions the choice of v P(-) is left arbitrary insofar
as inviscid fluid theory is concernied. In general, this distribution
is determined by the maner in which the steady flow was established,
which itncludes effects such as viscosity. In this report, F(j.) is
chosetn arbitrarily in the hope that the nature of these solutions are
indicative of the types of balances one will find in more complicated
situatiotns.
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As a result of this approach, %P or some derivative of ' will
be discontinuous across a given closed stream line. Let this stream
line be given by the curve r = r(G). Define

It is required that *iw.=Out=V , a constant, on r = r((?). Furth-
ermore, * l- Ost on r = r(O), where ?Nn = normal derivative.
This ensures continuity of the tangential velocity and, through
Bernoulli's equation, pressure.

EXACT SOLUTIONS

Any circularly symmetric vortex is a steady, equilibrium solu-
tion to the equations for a two-dimensional, ideal fluid on the f-
plane. In the presence of a mean flow the situation is altered:

A. No shear (Batchelor 1967)

If the background flow has no horizontal shear, we may formulate
the problem as:

*"A+ :0 O Ir IO J-c
where (r,O) are polar coordinates with the orig 1 at the ceilter of
the eddy, u is the velocity of the mean flow and k is a constait.

The solution is given by:

Yat = I aI('r- +) 5 iA (9jAr i- L [k J'otk " Js,(kf $in (4)

J, Lk) 0 ,

where J is the Bessel function of order n. The streamlines are
sketcheg in figure 1, where k has been chosen to be the first zero of
J . Notice the dipole structure. The mutual advection of these vor-
tices holds the modon steady in the face of the mean flow.

B. linear shear (Stern & Flierl, private commtaication)

An exact solution in this case is possible if the center of the
modon is at the latitude where the imposed mean flow has zero velo-
city. The formulation is:

where E is the shear of the flow at infinity. The rest of the prob-
lem is as before.

The solution s givet by:

tout/a (A 'r -Cr- ) Cos (6)
t4pII _f Lks -'[1~ - T~k ' -t(O 0L k ]k t

"" fe = , zk) -_ 0

.'
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Figure 1. Streamlines for the Batchelor modon.

Figu~re 2. Streamlines for the exact shear solution.
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The streamlines are sketched in figure 2, where k has been chosen to
be the first zero of J2 "

PERTURBATION APPROACH

A. Simple solutions

When the mean flow at infinity can be considered weak (in a
sense to be explained later), a perturbation approach is fruitful.
We formulate the problem for the case where there is a linear Shear
velocity profile at infinity, and where the center of the modon may
be on a latitude where the velocity does not equal zero. Special
cases will be considered afterwards. Recall that F(- .
Write wb'iLf1 where 440 4S r-0o and -
Introduce the scaling 'tfosAsL - L , where L = size of eddy and
u velocity scale inside eddy. This implies that

S (f ~t-JA* ill' , 9,.%p ) Z o 0

where ,4.cUolUs Ie IL/u . Then

Assume A"ut " 0(I) . (This is the condition that the mean flow
at infinity be weak.) Expanding tf , F and r() in powers of *6 (i.e.,
P= I.o + Vt 1 + ... , etc.) we obtain a hierarchy of pro ems that an

be solved in terms of lower order solutions only. F 0* and Four

are determined from the boundary conditions at infinty, while 0

and F- are arbitrary. 0

(i)/ 0.

(a) Fn = W0 and Fin = 0.

The formulation of this problem is:

-  
* o -%'t* as v- o ,

vvt~ - ¢i..-cos2e) as r--oo

V , 1 0 (W)

a30t W1 0=

+ reu to) 1: , ( 4a 1 - V

The result is:

rt~41 L Y'*(J, Cf0c s 0(it
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The streamlines are sketched in figure 3 for VYJ .2. It is
interesting to note that no streamlines extend to infinity for

= -. 2. This indicates that the eddy is not isolated in the sense
that it has infinite total energy due to the log term. In the fol-
lowing example, the eddy is required to have finite energy, which
dictates a different form for Fi l.

(b) FI['=Fi( ]* F,'(%+ ") + OW) = t- k"+"iv- 'I " k t o(r)

The formulation is the same as the previous problem, except that
equations (9a.b) become:

++;n. k'L€ : 1A = 00

The result is:L~~[-r +oUl -1y'-r% cost St++o, c
rM"" C0 5Ij c 29)] +LrC 0 -1,

T,C I k) -0 .
The streamlines are sketched ii figure 4. For this solution, the
flow outside of the eddy is very weak [0( f)]. [Iside of the eddy

there -is 0() flow with a single extremum in A and whose sense of
flow depends solely on a. This differs from the exact shear solution
since cos20 terms cannot enter at 0().

(ii) 0 -

For this case, we choose a linear vorticity function, as in case
(b) above. Writing a = a + a ... we find that

V'**" o = 0 ot - 0 QS r co ,

v2 ,0: ", * ,ot -+ 0rsil - Lr2.( l-cos29) a5 v (

with the matching conditions unachanged. The result is:

T0 [ L*r '1/( ,-s e 0. rr )cose] S, o-Jk
I+i': -€, Lk 's0 W] [So+ kr)-okJ+

+ L kLkr$fOO ( 14)

• c -t Lik - o52)] -t our%))
T, tk) .

This solution is equivalent to that of the previous problem (weak
shear and no in r term), except that a small amount of the Batchelor
modon has been added throughout the field.

BATCHELOR MODON PERTURBED BY WEAK LINEAR SHEAR

This is the natural extension of the previous problem, yet there
are difficulties unLike any encountered previously. First, we indi-
cate the nature of he difficulty (solvability) md then we explore a
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Figure 3. (a) Streamlines for perturbation problem with weak
shear and the in r term, .2. The inner streainliles -ie

approximately at r 1.
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Figure 3. (b) Streamlines for perturbation problem with
weak shear and the in r term. = .2. The inner streamlines
are approximately at r - 1.

TT~hJ
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FIGURE 4a.

Figure 4. (a) Streamlin~es for perturbation problem with weakshear, but no in r term,. .2. The dotted line indicatesr 1. (b) T -2
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remedy (allowing Fit to be a nonlinear function.)

Since the mean flow at infinity is 001), it provides a natural
scaling for If and we are left with )La I . The formulation is
then the same as in the last problem save the bounidary conditions at
infinity, which now are:

The lowest order solution is precisely the Batchelor modon. Sol u-
tions of the first order problem have the formI

where A 0,A 1,B,C,D,E,F are constants to be determined. The matching
conditions are

00A I 4art(0)sin a a, rt

We now investigate the solvability of this problem. Define
r1 *rv + ' (il'r1- vVL)W+o , whivet '+ 4*'/Ar..rite

'I~ +~Q~~(I1.Since V~~)1

Since Bessel's equation is self-adjoint, we consider the integrals:

r dr al Lky)I i('n - 0(q
J% Si. !117.

where the brackets are vertically ordered. Integration by parts and
application of the bounidary conditions% implies that

Sic V1J 3 (210)

where the prime denotes differentiation with respect to the argunent.
Sican o 1 (k) = 0 the third condition cannot be net and the problem

cantbe sovdas formulated.

Onie way to reformulate the problem so that it canl be solved is
as follows . Recall that

Choose - a.. + S~ 4 '.) I a6 The lowest order problem
is A.ichanged aid its solution is again the Batchelor modon. Thus,

~i (r1 sin & , ,dee-u. LkJ0,(klij' -T, k,) Cz
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3u:stiturion inco equation 21a) yields

- ( I $3t 4)cos2e o 4@ ,)
Rewrite equation (16a) as

0°' -- A 8o!r- = ft Cos A CM 2l r cos4e. (24)

We now investigate the solvability of this problem. 'drite." in * C c'e 4 ~ ,o. , ¢ i~ .(

Equation 123) implies

92,. 4 2~

The matching conditions can be expanded in a similar way and yield

4OL V-, I Y*,1A) ,-1r, tir f.13

',o "4 A(i)= A4  , ()

* ro#'w -4A .
Applying the solvability criteria implies that

-~~ I&4 N14  -Z lock() g

4A,4+3Tk): z Q

where Ne 2 dr -T,(k.) Integration ) NI o 2 No. and
N4 = 3/% No+ . Thus, the only way that the first two equations are

c')mpatible is if B0 = 1.

For B0 = 1, not only can the problem be solved, but there is a
great ieal 'f flexibility in choosing the parameters.

The simplest is A 0 = - Ther

In 4 r2- 4 y -r-7) co 29 ,

k-C%(0 T kJ ) No'~-' cos2O ,J (
~r(e) *:1

N4umerical integration prov ides the profiles of 4-1 ) 3nd
. , ) , which are sketched in figure 5. The streamlines are n:t

obvious and, as part of my continuing research, will be plotted by
computer, though not in this report.

Results for /A * 0 are intriguing, but have not oeen
thoroughly explored. A graph of Fin( 4) is presented in figure 6 for
Y = .2 and A = -50,0,50. It is interesting to note that even for a

large value of & ( A = -50), only small effects are felt in A4 3nd
rl 2 (A4  .01, r1  -. 01). This suggests that the Batchelor modon
resists Jeformatiars of this type.

1.

• J' -, .J l ' . -; .. . . . . . . .. .... .. .
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Fiarea sh. a Plots '~ I 10 (r) and + 1 2 (r') for the Batchelor modon
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FM,

earl

Figure 6. F(%) versus + , 50, 0, -50.
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CONCLUSIONS

Indications are that strong, isolated, two-dimensional vortice.
can exist in the presence of an 0(1) mean flow with weak shear. It
is intriguing that a nonlinear vorticity function is required to find
an appropriate perturbation to the Batchelor modon. The flexibility
encountered in this solution offers hope that perturbation solutiot5s
on the P -plane may be obtained via a similar approach.

The implications of the need for a nonlinear functional indi-
cates that a subtle balance is needed for coherent structures to
maintain their identity in non-uniform mean flows. It also points to
the fact that the processes that might generate such steady flows are
compl icated.

These questions will be explored in future work.
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